1.

When a body of mass m raised by a string with an acceleration $\mathrm{a}=\mathrm{g}$ in an upward direction, the tension in the string is:
(1) 2 mg
(2) mg
(3) $\frac{\mathrm{mg}}{2}$
(4) Zero
2.

Three identical masses each of mass 4 kg are connected by massless inextensible strings. The string joining A and B passes over a massless frictionless pulley as shown in the figure. The tension in the string connecting mass B and C is:

(1) 40 N
(2) 20 N
(3) 26.67 N
(4) 13.33 N
3.

A monkey slides down a rope. The breaking load for the rope is $\frac{5}{6}$ th of the weight of the monkey. The minimum acceleration with the monkey should slide so that the rope does not break, is:
(1) $\frac{5 \mathrm{~g}}{6}$
(2) $\frac{g}{2}$
(3) $\frac{g}{6}$
(4) $\frac{2 \mathrm{~g}}{3}$
4.

The force (F) acting on a particle varies with the time (t) as shown in the figure. The change in momentum during $\mathrm{t}=0$ to $\mathrm{t}=6 \mathrm{~s}$ is:

(1) 80 Ns
(2) 40 Ns
(3) 20 Ns
(4) Zero
5.

A body of mass 10 kg is suspended by two massless strings making angles 45° and 30° with horizontal as shown in the figure then:

(1) $\sqrt{2} \mathrm{~T}_{1}+3 \mathrm{~T}_{2}=0$
(2) $2 \mathrm{~T}_{1}-\sqrt{3} \mathrm{~T}_{2}=0$
(3) $\sqrt{2} \mathrm{~T}_{1}-\sqrt{3} \mathrm{~T}_{2}=0$
(4) $\sqrt{3} \mathrm{~T}_{1}+\sqrt{2} \mathrm{~T}_{2}=0$
6.

Two masses M and m are connected by a weightless string. They are pulled by a force on a frictionless horizontal surface. The tension in the string will be:

(1) $\frac{\mathrm{F}(\mathrm{M}+2 m)}{\mathrm{m}+\mathrm{M}}$
(2) $\frac{F}{m+M}$
(3) $\frac{\mathrm{FM}}{\mathrm{m}}$
(4) $\frac{\mathrm{Fm}}{\mathrm{m}+\mathrm{M}}$
7.

A body of mass m traveling with velocity $(\hat{i}+2 \hat{j})$ is given an impulse $6 \mathrm{~m} \hat{\mathrm{j}}$. The final velocity of the body will become:
(1) $-\hat{\mathbf{i}}+8 \hat{\mathbf{j}}$
(2) $\hat{\mathrm{i}}-8 \hat{\mathrm{j}}$
(3) $\hat{\mathrm{i}}+8 \hat{\mathrm{j}}$
(4) $8 \hat{i}-\hat{j}$
8.

According to Newton's second law of motion force acting on the body is: [where symbols have their usual meaning]
(1) $m \vec{a}$
(2) $\vec{v} \frac{d m}{d t}$
(3) $\frac{d \vec{p}}{d t}$
(4) All of these
9.

Which of the following is/are an example/s of impulse?
(1) Hitting off the ball on the ground and bounces back
(2) When a batsman hits the ball
(3) When a ball falls into the net
(4) All of these
10.

In the given figure, the acceleration of block A (of mass 2 kg) is:

Smooth horizontal surface
(1) $2 \mathrm{~m} / \mathrm{s}^{2}$
(2) $15 \mathrm{~m} / \mathrm{s}^{2}$
(3) $10 \mathrm{~m} / \mathrm{s}^{2}$
(4) $0.1 \mathrm{~m} / \mathrm{s}^{2}$
11.

A sphere weighs 10 N and rests in a V-shaped trough whose sides form an angle 30^{0}. Normal reaction exerted by wall B on the sphere is:

(1) 10 N
(2) 53 N
(3) 5 N
(4) Zero
12.

Normal force acting between two surfaces in contact is fundamentally:
(1) Electromagnetic
(2) Gravitational
(3) Weak nuclear force
(4) Strong nuclear force
13.

Choose the incorrect alternative:
(1) Newton's first law is the law of inertia
(2) Newton's first law states if the net force on a system is zero, the acceleration of any particle of the system is zero.
(3) Action and reaction act simultaneously
(4) The area under the force-time graph is equal to the change in momentum
14.

Two forces $(6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}})$ and $(4 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}) \mathrm{N}$ are acting on a body of mass 2 kg , then acceleration produced in the body in $\mathrm{m} / \mathrm{s}^{2}$ will be:
(1) $(5 \hat{i}+6 \hat{\mathbf{j}})$
(2) $(10 \hat{i}+12 \hat{j})$
(3) $(6 \hat{\mathrm{i}}+12 \hat{\mathrm{j}})$
(4) $(2 \hat{i}+3 \hat{j})$
15.

The speed of a 5 kg body is reduced from $65 \mathrm{~m} / \mathrm{s}$ to 15 m / s in 2 s . The average resisting force acting is:
(1) 125 N
(2) 1250 N
(3) 12.5 N
(4) 200 N
16.

A block of mass M is pulled by a force F making angle θ with horizontal on a smooth horizontal surface as shown. If a is the acceleration of block on the surface, then the contact force between the block and the surface is:

(1) $\mathrm{Mg}+\mathrm{Ma} \cos \theta$
(2) $\mathrm{Mg}-\mathrm{Ma} \cos \theta$
(3) $\mathrm{Mg}+\mathrm{Ma} \tan \theta$
(4) Mg - Ma $\tan \theta$
17.

A machine gun fires a bullet of mass 50 g with a velocity of $1000 \mathrm{~m} / \mathrm{s}$. The man holding it can exert a maximum force of 160 N on the gun. How many bullets can he fire per second at the most?
(1) 3
(2) 4
(3) 2
(4) 5
18.

If block A as shown in the figure is pushed horizontally by a horizontal force 20 N , then the force exerted by A on B is:

(1) 4 N
(2) 8 N
(3) 10 N
(4) 20 N
19.

If the force acting on a system is zero, the quantity which remains constant is:
(1) Force
(2) Linear momentum
(3) Speed
(4) Kinetic energy
20.

Pulley and strings shown in the figure are massless. Acceleration of 3 kg block is: [Take g = 10 $\mathrm{m} / \mathrm{s}^{2}$]

(1) $1 \mathrm{~m} / \mathrm{s}^{2}$
(2) $2 \mathrm{~m} / \mathrm{s}^{2}$
(3) $3 \mathrm{~m} / \mathrm{s}^{2}$
(4) $4 \mathrm{~m} / \mathrm{s}^{2}$

Fill OMR Sheet*
*If above link doesn't work, please
go to test link from where you got the pdf and fill OMR from there

