The variation of magnetic field along the axis of a solenoid is graphically represented by (O is the centre with l, l' as the extremities of the solenoid along the axis)?

2.

A ring of radius R carries a linear charge density λ . It is rotating with angular speed ω about an axis passing through the centre and perpendicular to the plane. The magnetic field at its center is?

- 1. $\frac{3\mu_0\lambda\omega}{2}$
- $2. \ \frac{\mu_0 \lambda \omega}{2}$
- 3. $\frac{\mu_0\lambda\omega}{\pi}$
- 4. $\mu_0 \lambda \omega$

Two long parallel wires are at a distance d apart. They carry steady equal currents out of the plane of the paper in the opposite direction as shown in the figure. The variation of the magnetic field B along the line XX' is given by

4.

Wires of infinite length each carrying a current i are placed on the x-axis respectively along x=a, x=2a, x=3a and so on, as shown in the figure. The magnetic field at the origin is?

1. Zero

2.
$$\frac{\mu_0 i}{2\pi a} in(2) \hat{j}$$

3.
$$-\frac{\mu_0 i}{2\pi a} in(2) \hat{j}$$

4.
$$\frac{\mu_0 i}{2\pi a} in(2)\hat{k}$$

5.

Circular regions (1) and (2) have current densities J and -J respectively, such that their region of intersection carries no current. Magnetic field in their region of intersection is?

1. Uniform, proportional to $(r_1 + r_2)$ -d

2. Uniform, proportional to d

3. Non-uniform

4. Zero

A loop carrying current 1 has the shape of a regular polygon of n side. If R is the distance from the center to any vertex, then the magnitude of the magnetic induction vector B at the center of the loop is?

- 1. $n\frac{\mu_0 l}{2\pi R} \tan \frac{\pi}{n}$
- 2. $\frac{\mu_0 l}{2R}$
- 3. $n \frac{\mu_0 l}{2\pi R} \tan \frac{2\pi}{n}$
- 4. $\frac{\mu_0 l}{\pi R} \tan \frac{\pi}{n}$

7.

An arrangement with a pair of quarter circular parts of radii r and R with a common center C and carrying a current l is shown.

The permeability of free shape is μ_0 . The magnetic field at C is?

- 1. $\frac{\mu_0 l}{8} \left(\frac{1}{r} \frac{1}{R} \right)$ into the page
- 2. $\frac{\mu_0 l}{8} \left(\frac{1}{r} \frac{1}{R} \right)$ out of the page
- 3. $\frac{\mu_0 l}{8} \left(\frac{1}{r} + \frac{1}{R} \right)$ out of the page
- 4. $\frac{\mu_0 l}{8} \left(\frac{1}{r} + \frac{1}{R} \right)$ into the page

8.

Two infinitely long parallel wires carry currents of magnitude l_1 and l_2 and are at a distance 4 cm apart. The magnitude of the net magnetic field is found to reach a non zero minimum value between the two wires and 1 cm away from the first wire. The ratio of the two currents and their mutual direction is?

- 1. $\frac{l_2}{l_1} = 0$, antiparallel
- 2. $\frac{l_2}{l_1} = 9$, antiparallel
- 3. $\frac{l_2}{l_1} = 3$, antiparallel
- 4. $\frac{l_2}{l_1} = 3$, parallel

9.

A long straight wire of radius R carries a uniformly distributed current i. The variation of magnetic field B from the axis of the wire is correctly presented by the graph?

Moving Charges and Magnetism Part 1: Magnetic Field

Contact Number: 9667591930 / 8527521718

10.

Four thin straight long wires are all parallel to Z-axis. They pass through the points A (3, 0, 0), B (0, 3, 0), C (-3, 0, 0) and D(0, -3, 0). They all carry currents in \hat{k} direction of magnitudes 0.3 A, 0.6 A, 0.3 A, and 0.3 A respectively. The magnitude of the magnetic field at the origin O due to

- 1. Wires at A and C is zero
- 2. Wires at A and B is $2\sqrt{2} \times 10^{-8} \text{ T}$
- 3. Wires at A and D is $2\sqrt{2} \times 10^{-8} \text{ T}$
- 4. All wires are 2×10^{-8} T

11.

A current-carrying loop is turned into a coil having n identical concentric turns. Magnetic field at the center becomes x times its initial value, then x = ?

- 1. n
- 2. n^2
- 3. 2n
- 4. $\frac{1}{n}$

12.

Current is flowing in a thick metal rod. The magnetic field is associated with the current will be?

- 1. Only inside the rod
- 2. Only outside the rod
- 3. Both inside and outside the rod
- 4. Neither inside nor outside the rod

13.

The magnetic intensity near one end of a long solenoid of length L and having N turns and carrying current i is given as?

- 1. $\mu_0 Ni$
- 2. $\frac{\mu_0 N i}{2I}$
- 3. $\frac{Ni}{2L}$
- 4. $\frac{\mu_0 Ni}{L}$

14.

What should be current in a circular coil formed by a wire of length 31.4 cm to produce a magnetic field of $1 \times 10^{-4} T$?

- 1. 0.8 A
- 2.8A
- 3. 2 A
- 4.80 A

15.

Magnetic field at the center of an infinite solenoid is B. Magnetic field at its end will be?

- 1. B
- 2. $\frac{B}{2}$
- 3. 2B
- 4. Zero

Two long parallel wires A and B carry current I_1 and $I_2(I_1>I_2)$. When I_1 and I_2 are in same direction the magnetic field at a point midway between the wires is $10\times 10^{-6}T$. If I_2 is reversed the field becomes $30\times 10^{-6}T$. The ratio $\frac{I_1}{I_2}$ is?

- 1. 1
- 2.3
- 3. 4
- 4.2

17.

The wire shown carries a current of 40 A. If radius r= 1.57 cm, the magnetic field at point P will be?

- 1. 1. $6 \times 10^{-3}T$
- $2.3.2 \times 10^{-3}T$
- $3.1.2 \times 10^{-3}T$
- 4. $6.4 \times 10^{-3}T$

19.

Magnetic field at the centre of the $\mathbf{1}^{st}$ orbit of an electron in H atom is B. Magnetic field at the center of the $\mathbf{2}^{nd}$ orbit is?

- 1. $\frac{B}{8}$
- 2. $\frac{B}{2}$
- 3. $\frac{B}{16}$
- 4. $\frac{B}{32}$

20.

The magnetic field intensity at the point O of a loop with current i, whose shape is illustrated below is?

- 1. $\frac{\mu_0 i}{4\pi} \left[\frac{3\pi}{2a} + \frac{\sqrt{2}}{b} \right]$
- $2. \frac{\mu_0 i}{4\pi^2} \left[\frac{2}{a} + b \right]$
- 3. $\frac{\mu_0 i}{2\pi} \left[\frac{1}{a} + \frac{1}{b} \right]$
- 4. $\frac{\mu_0 i}{4\pi} \left[\frac{1}{a} + \frac{1}{b} \right]$

18.

Magnetic field at the outer surface of long hollow cylindrical shells of radius R and carrying current I is B. Magnetic field at distance $\frac{3R}{2}$ from the axis of the cylindrical shell is?

- $1.\frac{B}{2}$
- 2.2B
- 3. $\frac{B}{4}$
- 4. $\frac{2B}{3}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there