Work, Energy & Power Part 2 (Conservation of Mechanical Energy, Relation between P.E. and Force, Power, Contact Number: 9667591930 / 8527521718 Collisions)

1.

A motor pulls a block by giving a force of 50 N at a speed of 36 km/h. The power supplied by the motor to the block is:

- 1. 500 watt
- 2. 1800 watt
- 3. 250 watt
- 4. 200 watt

2.

ball falls from height H and loses 36% energy during impact with the ground. The height up to which the ball rises is:

- (1) 0.64H
- (2) 0.8H
- (3) 8.36H
- (4) 0.5H

3.

A 40 kg boy is swinging on a swing. The power delivered by gravity force, when the swing is making an angle of 30° with the horizontal and the boy moving with a velocity of 8 m/s upwards, is: $(g = 10 \text{ m/s}^2)$

- (1) 1000 W
- (2) 500 W
- (3) 1600 W
- (4) $1600\sqrt{3}$ W

4.

When the work done by a conservative force is positive,

- (1) the potential energy remains the same as initial.
- (2) the potential energy decreases.
- (3) the kinetic energy may increase.
- (4) Both (2) & (3)

5.

A particle is suspended by a light rod of length l. The minimum speed with which the particle should be projected, so that it moves in a vertical circle is:

- 1. $3\sqrt{gl}$
- 2. $\sqrt{2gl}$
- 3. $2\sqrt{gl}$
- 4. $\sqrt{5al}$

A moving particle of mass m makes a head-on elastic collision with a stationary particle of mass 2m. The fraction of kinetic energy lost by the first particle is:

- 1. $\frac{1}{9}$

A car of mass 100 kg and traveling at 20 m/s collides with a truck of mass 1 ton traveling at 9 km/h in the same direction. The car bounces back at a speed of 5 m/s. The speed of the truck after the impact is:

- 1. 11.5 m/s
- 2.5 m/s
- 3. 18 m/s
- 4. 12 m/s

neetprep

Work, Energy & Power Part 2 (Conservation of Mechanical Energy, Relation between P.E. and Force, Power, Contact Number: 9667591930 / 8527521718 Collisions)

8.

A constant force $\overrightarrow{F} = \left(2\hat{i} + 3\hat{j} - \widehat{k}\right)$ acts on a particle. At a certain instant when velocity of the particle is $\overrightarrow{v} = (a\hat{i} + b\hat{j} + \hat{k})ms^{-1}$. The power of the force is zero, then

- (1) 2a + 3b = 1
- (2) a + b = 1
- (3) 2a = 36
- (4) a + b + 1 = 0

9.

A chain of mass m and length l is kept on a smooth horizontal table with one-fourth of the chain overhanging from the table edge. Minimum work done in bringing the hanging part onto the table is:

10.

The principle of conservation of energy implies that:

- (1) the total mechanical energy is conserved.
- (2) the total kinetic energy is conserved.
- (3) the total potential energy is conserved.
- (4) the sum of all types of energies is conserved.

11.

The figure shows the potential energy function U(x) for a system in which a particle is in one-dimensional motion. What is the direction of the force when the particle is in region AB? (symbols have their usual meanings)

- 1. The positive direction of x
- 2. The negative direction of X
- 3. Force is zero, so direction not defined
- 4. The negative direction of y

12.

A body of mass m moving with a certain speed suffers a perfectly inelastic collision with a body of mass M at rest. The ratio of the final kinetic energy of the system to the initial kinetic energy is:

- 1. $\frac{m}{m+M}$

- 4. $\frac{m+M}{M}$

13.

The mechanical energy of the system is conserved when work done by

- 1. conservative force is zero.
- 2. non-conservative force is zero.
- 3. non-conservative force is non-zero.
- 4. conservative force is equal to work done by the nonconservative force.

Work, Energy & Power Part 2 (Conservation of Mechanical Energy, Relation between P.E. and Force, Power, Collisions) Contact Number: 9667591930 / 8527521718

14.

A particle is moving such that potential energy U varies with position in metre as $U = (4x^2 - 2x + 50)$ J. The particle will be in equilibrium at:

- (1) x = 25 cm
- (2) x = 2.5 cm
- (3) x = 25 m
- (4) x = 2.5 m

15.

Select incorrect statement about potential energy.

- 1. Change in potential energy is equal to work done against the internal conservative force.
- 2. Change in potential energy is independent of the reference point.
- 3. Change in potential energy depends on the reference
- 4. The potential energy at a point is not unique.

16.

A block of mass m is moving with speed v towards a spring block system. If the collision is perfectly inelastic, then maximum compression in the spring will be:

17.

The figure shows the potential energy function U of a system in which a particle is in one-dimensional motion. In which region the magnitude of the force on the particle is greatest? (x: position)

- (1) OA
- (2) CD
- (3) AB
- (4) BC

18.

The potential energy of a particle varies with distance r as shown in the graph. The force acting on the particle is zero at:

- (1) P
- (2) S
- (3) Q and R
- (4) Both P and S

neet prep

Work, Energy & Power Part 2 (Conservation of Mechanical Energy, Relation between P.E. and Force, Power, Collisions) Contact Number: 9667591930 / 8527521718

19.

A toy car slips down the smooth inclined plane as shown in the figure. It goes around the vertical smooth circle at the bottom, the relation between H and h is:

(1) H = 2h

(2) H = 3h

(3) H = 4h

(4) H = 5h

20.

The ratio of velocities of a body connected to a string at points A, B and C to just complete vertical circular motion is:

(1) 1: 2: 3

(2) $1^2: 3^2: 5^2$

(3) 1: 3: 5

(4) $\sqrt{1}: \sqrt{3}: \sqrt{5}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

to days of ANY NEETprep course