

1.

If an iron rod is dipped in CuSO₄ solution, then:

- 1. Blue colour of the solution turns red
- 2. Brown layer is deposited on iron rod
- 3. No change occurs in the colour of the solution
- 4. None of the above

2.

When 0.1 mol ${\rm MnO_4}^{2^-}$ is oxidized the quantity of electricity required to completely oxidise ${\rm MnO_4}^{2^-}$ to ${\rm MnO_4}^{-^+}$ is

- 1. 96500 C
- 2. 2 x 96500 C
- 3.9650 C
- 4.96.50 C

3.

The EMF of the given cell is:

$$Zn(s) | Zn^{+2} (0.1M) || Sn^{+2} (0.001M) | Sn(s)$$

Given
$$E^{o}_{Zn^{+2}\,/\,Zn} = -0.76~V,~E^{o}_{Sn^{2+}\,/\,Sn} = -0.14~V$$

- 1. 0.62V
- 2. 0.56V
- 3. 1.12V
- 4. 0.31V

4.

The potential of hydrogen electrode having a pH = 10 is

- 1.0.59V
- 2. -0.59V
- 3. 0 V
- 4.-059V

5.

The equilibrium constant of a 2 electron redox reaction at 298 K is 3.8 x 10^{-3} . The cell potential E° (in V) and the free energy change ΔG° (in kJ mol^{-1}) for this equilibrium respectively, are

- 1. -0.071, -13.8
- 2. -0.071, 13.8
- 3. 0.71, -13.8
- 4. 0.071, -13.8

6.

Aluminium oxide may be electrolysed at 1000 C to furnish aluminium metal (Atomic mass = 27 amu; 1 Faraday = 96,500 Coulombs). The

cathode reaction is
$${
m Al}^{3+} + 3{
m e}^-
ightarrow {
m Al}$$

To prepare 5.12 kg of aluminium metal by this method would require

- 1. 5. $49 \times 10^7 C$ of electricity
- 2. $1.83 \times 10^7 C$ of electricity
- 3. $5.49 \times 10^4 C$ of electricity
- 4. $5.49 \times 10^1 C$ of electricity

7.

For the cell, $\mathrm{Ti/Ti}^+(0.001\mathrm{M})\|\mathrm{Cu}^{2^+}(0.1\mathrm{M})\mathrm{Cu}$, $\mathrm{E}_{\mathrm{cell}}^{\mathrm{o}}$ at

25 °C is 0.83 V. E_{cell} can be increased:

- 1. By increasing [Cu²⁺]
- 2. By increasing [Ti⁺]
- 3. By decreasing [Cu²⁺]
- 4. None of the above

8.

What will be the electrode potential of Cu electrode dipped in 0.025 M ${\rm CuS}O_4$ solution at 298 K. Cu has the standard reduction potential 0.34 V :-

- 1. 0.047 V
- 2. 0.293 V
- 3. 0.35 V
- 4. 0.387 V

9.

$$\begin{split} &Cu\!\left(s\right) \left|Cu^{+2}\!\left(aq,\; 10^{-3}\right)\right| \left|Ag^{+}\!\left(10^{-5}M\right)\right| \; Ag\!\left(s\right) \\ &if \; E^{0}_{Cu^{+2}\,/Cu} \; = \; +0.34 \; V \end{split}$$

$$E^0_{Ag^+/Ag} \ = \ + 0.80 \ V$$

E_{cell} will be:

- 1. 0.46 V
- 2. $0.46 \frac{RT}{2F} \text{ In } 10^7$
- 3. $0.46 + \frac{RT}{2F}$ In 10^7
- 4. $0.46 \frac{RT}{2F} \text{ In } 10^2$

10.

Consider the following cell reaction

2Fe(s) + $O_2(g)$ + 4H⁺(aq) \rightarrow 2Fe²⁺(aq) + 2H₂O(l) E° = 1.67 V, At [Fe²⁺] = 10⁻³ M, P_{O_2} = 0.1 atm and pH = 3, the cell potential at 25°C is

- 1. 1.27 V
- 2. 1.77 V
- 3. 1.87 V
- 4. 1.57 V

11.

A fuel cell develops an electrical potential from the combustion of butane at 1 bar and 298 K

$$C_4H_{10}(g) + 6.5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l);$$

What is $ext{E}^{\circ}$ of a cell? given $\Delta G^{o} = -2746 kJ/mole$

- 1.4.74 V
- 2. 0.547 V
- 3. 4.37 V
- 4. 1.09 V

12.

A gas X at 1 atm is bubbled through a solution containing a mixture of $1M\ Y^-$

and 1M $Z^{\text{-}}$ at 25 $^{\text{o}}\text{C}$. If the reduction potential of Z>Y>X, then

- 1. Y will oxidize X and not Z
- 2. Y will oxidize Z and not X
- 3. Y will oxidize both X and Z
- 4. Y will reduce both X and Z

13.

The number of Faradays required to produce 20.0 g of Ca from molten $CaCl_2$ is-

- 1. 2F
- 2. 1F
- 3. 4F
- 4.3F

14.

Which cell will measure the standard electrode potential of a copper electrode?

- 1. Pt (s) | $H_2(g, 0.1 \text{ bar}) | H^+(aq., 1M) || Cu^{2+}(aq, 1 M) |$
- 2. Pt (s) | H₂(g, 1 bar) | H⁺(aq, 1M) || Cu²⁺ (aq, 2 M) | Cu
- 3. Pt (s) | $H_2(g, 1 \text{ bar})$ | $H^+(ag, 1 \text{ M})$ || Cu^{2+} (aq, 1 M)| Cu
- 4. Pt (s) | H₂(g, 0.1 bar) | H⁺(aq, 0.1 M) || Cu²⁺(aq, 1M) | Cu

15.

Electrode potential for Mg electrode varies according to the equation $.E_{Mg^{2+}\big|\ Mg} = E_{Mg^{2+}\big|Mg}^0 - \frac{0.059}{2}log\frac{1}{\big|Mg^{2+}\big|}$

.

The graph of $E_{Mg^{2^+}\ /\ Mg}$ vs log [Mg^{2^+}] among the following is -

16.

Which of the following statement is correct?

- 1. E_{cell} and $\Delta_r G$ of cell reaction both are extensive properties
- 2. E_{cell} and $\Delta_r G$ of cell reaction both are intensive properties
- 3. \mathbf{E}_{cell} is an intensive property while $\Delta_r \mathbf{G}$ of cell reaction is an extensive property
- 4. E_{cell} is an extensive property while $\Delta_r G$ ofcell reaction is an intensive property

19.

$$egin{aligned} E^{\ominus}_{ ext{Cr}_2\, ext{O}_7^{2-}/\, ext{Cr}^{3+}} &= 1.\,33 ext{V} \;\; ; \;\; E^{\ominus}_{ ext{Cl}_2\,/\, ext{Cl}^-} &= 1.\,36 ext{V} \ E^{\ominus}_{ ext{Mn}\,O^-_4/\, ext{Mn}^{2+}} &= 1.\,51 ext{V} \;\;\; ; \;\; E^{\ominus}_{ ext{Cr}^{3+}\,/\, ext{Cr}} &= -0.\,74 ext{V} \end{aligned}$$

Use the data give above, find out the most stable oxidized species.

- 1. Cr³⁺
- 2. MnO_4
- 3. $Cr_2O_7^{2-}$
- 4. Mn²⁺

17.

The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called

- 1. Cell potential
- 2. Cell emf
- 3. Potential difference
- 4. Cell voltage

20

The quantity of charge required to obtain one mole of aluminium from Al_2O_3 is :

- 1. 1 F
- 2. 6 F
- 3. 3 F
- 4. 2 F

18.

An electrochemical cell can behave like an electrolytic cell when

- 1. $E_{cell} = O$
- 2. $E_{cell} > E_{ext}$
- 3. $E_{ext} > E_{cell}$
- 4. $E_{cell} = E_{ext}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course