Systems of Particles and Rotational Motion - Part 2 (Torque, Angular Momentum and Rolling Motion)

Contact Number: 9667591930 / 8527521718

1.

A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity ω . Four objects, each of mass m are attached gently to the opposite ends of the diameter of the ring. The ring rotates now with an angular velocity:

- 1. $\frac{M\omega}{M+4m}$
- 2. $\frac{(M+4m)\omega}{M}$
- 3. $\frac{(M-4m)\omega}{M+4m}$
- 4. $\frac{M\omega}{4m}$

2.

ABC is an equilateral triangle with O as its centre. F_1 , F_2 and F_3 represent three forces acting along the sides AB, BC and AC respectively. If the total torque about O is zero then the magnitude of F_3 is:

- 1. $F_1 + F_2$
- 2. $F_1 F_2$
- 3. $\frac{F_1+F_2}{2}$
- 4. $2(F_1 + F_2)$

3.

A particle of mass m moves along the line y = x with speed v. The magnitude of angular momentum about the point $(\sqrt{2}a, 0)$ is:

- 1. $\sqrt{2}$ mva
- 2. 2mva
- 3. mva
- 4. $\frac{mva}{\sqrt{2}}$

4.

A disc rolls on the ground without slipping. The velocity of the centre of mass is v. The speed of the particle P at circumference (v_p) is:

- 1. v
- 2. $\sqrt{2}v$
- 3. 2v
- 4. $\sqrt{3}v$

5.

The ratio of total energy to the rotational kinetic energy of rolling solid sphere is:

- 1. $\frac{7}{5}$
- 2. $\frac{2}{5}$
- 3. $\frac{5}{2}$
- 4. $\frac{7}{2}$

6.

A particle is moving along path AB. The angular momentum of the particle about the origin:

- 1. remains the same.
- 2. first increases then decreases.
- 3. first decreases then increases.
- 4. is zero.

Systems of Particles and Rotational Motion - Part 2 (Torque, Angular Momentum and Rolling Motion)

Contact Number: 9667591930 / 8527521718

7.

A projectile of mass 1 kg is projected with an initial velocity of 20 m/s at angle 60° with horizontal. Angular momentum of the projectile about the point of projection when it is at maximum height is:

- 1. $82 \text{ kg m}^2\text{s}^{-1}$
- 2. $120 \text{ kg m}^2\text{s}^{-1}$
- 3. $75 \text{ kg m}^2\text{s}^{-1}$
- 4. $150 \text{ kg } \text{m}^2\text{s}^{-1}$

8.

If a constant torque of 500 Nm turns a wheel of the moment of inertia 100 kgm² about an axis passing through its centre, then the gain in angular velocity in 2 sec is:

- 1. 10 rad/s
- 2. 5 rad/s
- 3. 20 rad/s
- 4. 25 rad/s

9.

A force $\overrightarrow{F}=\left(2\hat{i}+3\hat{j}+4\widehat{k}\right)N$ is acting at point (2 m, -3 m, 6 m). Find torque of this force about a point whose position vector is $\left(2\hat{i}+5\hat{j}+3\widehat{k}\right)$ m.

1.
$$\overrightarrow{ au} = \left(-17\hat{\mathrm{i}} + 6\hat{\mathrm{j}} + 4\hat{\mathrm{k}}\right) \, \mathrm{Nm}$$

2.
$$\overrightarrow{\tau} = \left(-17\hat{i} + 6\hat{j} - 4\hat{k}\right) \text{ Nm}$$

3.
$$\overrightarrow{ au} = \left(17\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 4\hat{\mathbf{k}}\right) \text{ Nm}$$

4.
$$\overrightarrow{\tau} = \left(-41\hat{i} + 6\hat{j} + 16\hat{k} \right) Nm$$

10.

A solid sphere is set into pure rolling on an inclined plane. Speed of centre C when the sphere reaches the bottom will be:

- 1. $\sqrt{\frac{10 \, \text{gh}}{7}}$
- $2. \sqrt{\frac{5 \, \mathrm{gh}}{7}}$
- 3. $\sqrt{\frac{20 \, \text{gh}}{7}}$
- 4. $\sqrt{\frac{40 \, \text{gh}}{7}}$

11.

A tangential force F acts at the top of a thin spherical shell of mass m and radius R. The acceleration of the shell, if it rolls without slipping is:

- 1. $\frac{F}{m}$
- 2. $\frac{6F}{5m}$
- 3. $\frac{5F}{3m}$
- 4. $\frac{2F}{3m}$

<u>Systems of Particles and Rotational Motion - Part 2</u> (<u>Torque, Angular Momentum and Rolling Motion</u>)

Contact Number: 9667591930 / 8527521718

12.

The value of M, as shown, for which the rod will be in equilibrium is:

- 1. 1 kg
- 2. 2 kg
- 3. 4 kg
- 4. 6 kg

13.

The minimum coefficient of friction for a solid sphere to roll without slipping on an inclined plane of inclination 45° is:

- 1. $\frac{2}{7}$
- 2. $\frac{1}{3}$
- 3. $\frac{1}{2}$
- 4. $\frac{2}{5}$

14.

A disc of radius R is moving without slipping with a linear velocity v. If v_P and v_Q are velocities of points P and Q respectively as shown in the figure, then the ratio $\frac{|v_P|}{|v_Q|}$ is:

- 1. 2
- 2. $\sqrt{2}$
- 3. $\frac{1}{\sqrt{2}}$

4. 1

15.

A meter scale is under the action of three forces as shown in the figure. The net torque about the centre of the scale is:

- 1. 1.6 Nm
- 2. 2.8 Nm
- 3. 3.2 Nm
- 4. 2.2 Nm

16.

A uniform rod of mass m and length l is held initially vertical as shown in the figure. If end A of the rod is released at t=0 and the rod does not slip at B, then the angular velocity of the rod about end B when it hits the ground is:

- 1. $\sqrt{3}\,\mathrm{g}$
- 2. $\sqrt{2 \, \text{gl}}$
- 3. $\sqrt{\frac{3g}{1}}$
- 4. $\sqrt{\frac{2g}{1}}$

Systems of Particles and Rotational Motion - Part 2 (Torque, Angular Momentum and Rolling Motion)

Contact Number: 9667591930 / 8527521718

17.

The torque about the point of projection of a projectile when the velocity of the particle becomes perpendicular to the direction of initial velocity is

- 1. $mu^2 sin\theta$
- 2. $mu^2 cos\theta$
- 3. $mu^2 tan \theta$
- 4. $mu^2 \cot \theta$

20.

A solid cylinder of mass 2 kg and radius 4 cm is rotating about its axis at the rate of 3 rpm. The torque required to stop after 2π revolutions is:

- $1.2 \times 10^6 \ \mathrm{N m}$
- $2.2 \times 10^{-6} \text{ N m}$
- $3.2 \times 10^{-3} \text{ N m}$
- $4.12 \times 10^{-4} \text{ N m}$

18.

A rod is falling down with constant velocity v_0 as shown. It comes in contact with hinge A and rotates about A. Angular velocity of the rod just after the moment when it *If above link doesn't work, please go to test link from comes in contact with hinge A:

- 4. $\frac{2}{5} \frac{v_0}{L}$

Fill OMR Sheet*

where you got the pdf and fill OMR from there

to days of ANY NEET course

19.

A small ball strikes a stationary uniform rod, which is free to rotate, in gravity-free space. The ball does not stick to the rod. The rod will rotate about:

- 1. its centre of mass.
- 2. the centre of mass of 'rod plus ball'.
- 3. the point of impact of the ball on the rod.
- 4. the point about which the moment of inertia of the 'rod plus ball' is minimum.