Botany - Section A

1. When plants like potato and sugarcane are cultivated, the site of origin of the new plantlets
2. is invariably the nodes present in the modified stems
3. is usually the nodes present in the modified stems but can sometimes be the internodes as well
4. is usually the internodes present in the modified stems but can sometimes be the nodes as well
5. is invariably the internodes present in the modified stems
6. What is incorrect regarding the pollen in an angiosperm?
7. Pollen itself is the male gamete.
8. Pollen is a gametophyte
9. Pollen can be considered an entire organism
10. Pollen produces male gamete
11. A pollen tube is not expected to be seen in:
I. Pteridophytes
II. Gymnosperms
III. Perennial angiosperms
12. Only I
13. Only I and II
14. Only II and III
15. I, II, and III
16. Identify the incorrectly matched pair:

I.	Conidia	Asexual reproductive structure in Penicillium
II.	Gemmules	Internal buds involved in asexual reproduction in Hydra
III.	Bulbil	Vegetative propagule in Eicchornia
IV.	Rhizome	Vegetative propagule in ginger

1. I and III only
2. II and III only
3. Only II
4. Only IV
5. Identify the correct statements:
I. In castor and maize, autogamy is prevented but not geitonogamy
II. In papaya, both autogamy and geitonogamy are prevented
6. Both I and II
7. Only I
8. Only II
9. Neither I nor II
10. The number of dioecious plants in the given list are

Papaya, Cucurbits, Marchantia, Chara, Date palm, Coconut

1. 2
2. 3
3. 4
4. 5
5. A plant with only male flowers and a unisexual male flower are respectively called as:
6. Monoecious and Staminate
7. Dioecious and Staminate
8. Staminate and Monoecious
9. Staminate and Dioecious
10. The mode of asexual reproduction shown in the given figure is:

11. Budding
12. Fission
13. Fragmentation
14. Parthenogenesis
15. The embryo of grass seed is enclosed within:
16. a single protective sheath: the coleoptile
17. a single protective sheath: the coleorrhiza
18. two protective sheaths: a coleoptile covering the young shoot and the coleorrhiza covering the young root 4. two protective sheaths: a coleoptile covering the young root and the coleorrhiza covering the young shoot
19. Match each item in Column I with one in Column II and select the correct match from the codes given:

	COLUMN I		COLUMN II
A	Groundnut	P	Lack endosperm
B	Coconut	Q	Endosperm persists in mature seeds
C	Orchids	R	Endosperm is completely consumed by developing embryo

Codes

	A	B	C
1.	P	Q	R
2.	R	Q	P
3.	R	P	Q
4.	P	R	Q

11. The outer layer of endosperm cells, present in all small grains and retained in many dicots with transient endosperm is called as:
12. Nucellus
13. Helobial endosperm
14. Aleurone
15. Perisperm
16. The given diagram shows:

17. antheridial head on the male gametophyte in Marchantia
18. archegonial head on the female gametophyte in Marchantia
3 . antheridial head on the sporophyte in
Marchantia
19. archegonial head on the sporophyte in

Marchantia
13. A collective term for the parts of a flower that produce ovules and ultimately develop into the fruit and seeds is

1. Pistil
2. Megasporophyll
3. Gynoecium
4. Carpel
5. Parthenocarpy is undesirable in:
6. Banana
7. Pineapple
8. Orange
9. Pistachio

15. Parthenium hysterophorus:

1. is a native of India
2. frequently causes pollen allergy
3. first appeared as a contaminant in imported rice
4. is vegetatively propagated by offset
5. The need for pollinators is not obligatory in:
6. chasmogamous flowers
7. cleistogamous flowers
8. geitonogamy
9. xenogamy
10. Vegetative apomixis where the flowers are replaced by bulbils which frequently germinate while still on the plant is important in:
11. Agave
12. Citrus
13. Mango
14. Euphorbia
15. Sporulation is seen in:
16. amoeba when it undergoes encystment in unfavourable conditions
17. encysted amoeba on the return of favourable conditions
18. binary fission in amoeba
19. the formation of buds in amoeba
20. Which of the following is the correct description of an anther?
21. Pollen sac
22. The pollen-producing reproductive organ of a flower
23. The male gametophyte of angiosperms
24. The part of a stamen that contains the pollen
25. In algae with haplontic life cycle:
I. Zygotes are the only diploid cells
II. Mitosis occurs only in the haploid phase
26. Only I is correct
27. Only II is correct
28. Both I and II are correct
29. Both I and II are incorrect
30. In the embryo sac of an angiosperm:
31. Two cells called synergids flank the egg at the chalazal end
32. Three antipodal cells guide the entry of the pollen tube into the embryo sac
33. at maturity there are 8 cells and 7 nuclei
34. polar nuclei share the cytoplasm of the large central cell
35. Identify the correct relationship of an ovary and an ovule in angiosperms:
36. ovary is the enlarged apical portion of the pistil; the ovary contains ovules, which develop into seeds upon fertilization
37. ovary is the enlarged basal portion of the pistil; the ovary contains ovules, which develop into seeds upon fertilization
38. ovary is the enlarged basal portion of the pistil; the ovary contains ovules, which develop into fruits upon fertilization
39. ovary is the enlarged apical portion of the pistil; the ovary contains ovules, which develop into fruits upon fertilization
40. The relative inefficiency of wind pollination in angiosperms is compensated by:
41. saving resources by not making nectar
42. promoting self-pollination
43. production of copious amounts of pollen grains
44. being heavily scented
45. In some species, such as coffee, the endosperm does not develop. Instead, the nucellus produces a nutritive tissue termed:
46. Perisperm
47. Cotyledon
48. Albumen
49. Scutellum
50. Identify the incorrect statement:
51. In vegetative reproduction, the offsprings are produced from the somatic cells
52. There are usually two germ pores in the pollen wall of dicots
53. In over 60 percent of angiosperms, the pollen grains are shed at 2 celled stage
54. No enzyme that can degrade sporopollenin is so far known
55. The generative cell of the pollen grain:
56. is larger than the vegetative cell
57. divides by meiosis to produce male gametes
58. is never "free" of the vegetative cell
59. is a syncytium
60. Consider the following two statements:
I. Vegetative reproduction is a type of asexual reproduction.
II. Vegetative propagation is usually considered a cloning method.
61. Both I and II are correct
62. Only I is correct
63. Only II is correct
64. Both I and II are incorrect
65. Gametes are haploid and the plant body from which they arise:
66. is always haploid
67. is always diploid
68. may be either haploid or diploid
69. plants produce spores and not gametes
70. Nucellar polyembryony:
I. is a type of apomixis
II. produces embryos that are genetically identical to the parent plant
71. Both I and II are correct
72. Only I is correct
73. Only II is correct
74. Both I and II are incorrect
75. The number of male gametes required to produce 200 seeds in a typical angiosperm would be:
76. 50
77. 100
78. 200
79. 400
80. In seagrasses:
81. female flowers remain submerged in water and pollen grains are released inside the water
82. pollen grains are released on the surface of the water, which are passively carried away by water currents; some of them eventually reach the female flower
83. pollination is by wind
84. pollination is by bats
85. The plumule of a eudicot seed consists of all of the following except
86. Epicotyl
87. Shoot apical meristem
88. Young leaves
89. Hypocotyl
90. What is the number of pairs of chromosomes in a somatic cell in Zea mays?
91. 5
92. 10
93. 20
94. 40
95. In the figure given below, you can see plantlets along the margins of a leaf in a certain plant. When they are mature enough, they drop off and root in any suitable soil beneath. The plant can be:

96. Arabidopsis thaliana
97. Eicchornia crassipes
98. Kalanchoe daigremontiana
99. Ricinus communis

Botany - Section B

36. Consider the two statements:
I. Larger the body size of an organism, larger is the life span
II. Larger body size means more surface area per unit volume and a higher metabolic rate than for the organisms with smaller body size
37. Only I is correct
38. Only II is correct
39. Both I and II are correct
40. Both I and II are incorrect
41. Identify the incorrect statement:
42. In Cycads, microsporangia on microsporophylls and megasporangia on megasporophylls, are aggregated into strobili on the same plant.
43. Flowering plants contain microsporangia in the anthers of stamens and megasporangia inside ovules inside ovaries.
44. The microspores become microgametophytes (pollen).
45. The megaspores become megagametophytes (embryo sacs).
46. Consider the given two statements:
I. Flowers of wind pollinated species are often small, green, and inconspicuous and they produce neither scent nor the nectar.
II. Their reproductive success does not depend on attracting pollinators.
47. Both I and II are correct and II explains I
48. Both I and II are correct but II does not explain I
49. I is correct but II is incorrect
50. II is correct but I is incorrect
51. The first mitotic division of the zygote in angiosperms divides the fertilized egg into a basal cell and a terminal cell where:
52. the basal cell degenerates and the terminal cell gives rise to both the embryo and the suspensor
53. the terminal cell degenerates and the basal cell gives rise to both the embryo and the suspensor
54. the terminal cell gives rise to most of the embryo and the basal cell produces the suspensor
55. the basal cell gives rise to most of the embryo and the terminal cell produces the suspensor
56. In Michelia, the gynoecium:
57. has multiple distinct carpels
58. has multiple carpels fused in a single bundle
59. has a single carpel
60. has multiple carpels fused in multiple bundles
61. The absence of genetic mechanisms which prevent self-fertilization resulting in plants that can reproduce successfully via both self-pollen and pollen from other individuals is known as:
62. Gametophytic self-incompatibility
63. Sporophytic self-incompatibility
64. Cryptic self-incompatibility
65. Self-compatibility
66. Consider the given two statements:
I. Endosperm has an important role within the human diet worldwide.
II. In cereal crops, the nutritious part of the grain is the seed and its endosperm.
67. Both I and II are correct and II explains I
68. Both I and II are correct but II does not explain I
69. I is correct but II is incorrect
70. II is correct but I is incorrect
71. In angiosperms:
I. Each anther develops four microsporangia
II. Each microspore mother cell undergoes meiosis and produces four haploid microspores
III. Each microspore gives rise to a male gametophyte
72. Only I and II are correct
73. Only I and III are correct
74. Only II and III are correct
75. I, II and III are correct
76. Consider the given two statements:
I. In angiosperms, the endosperm does not develop in ovules where the egg has not been fertilized
II. This prevents angiosperms from squandering nutrients on an infertile ovule
77. Both I and II are correct and II explains I
78. Both I and II are correct but II does not explain I
79. I is correct but II is incorrect
80. II is correct but I is incorrect
81. Plietesials are plants that grow for a number of years, flower gregariously (synchronously), set seeds, and then die. Such plants will include:
I. Neelakuranji
II. Bamboo
82. Only I
83. Only II
84. Both I and II
85. Neither I nor II
86. The PGR, present in the endosperm, which regulates cellular differentiation and embryonic organ formation is:
87. Auxins
88. Cytokinins
89. Gibberellins
90. ABA
91. In Lilium, the central cell of the embryo sac is 4 N . Therefore, upon fertilization the endosperm will be:
92. 2 N
93. 3 N
94. 4 N
95. 5 N

Zoology - Section A

51. What would be a normal finding on semen analysis of a male suspected of infertility?
I. A count of 10 million sperms per ml of semen
II. 60 percent sperms have normal shape and size
III. 60 percent sperms show vigorous motility
52. Only II
53. Only I and II
54. Only II and III
55. I, II and III
56. The hormones represented by A and B in the given figure will be:

57. LH and FSH
58. FSH and LH
59. LH and LH
60. FSH and FSH
61. What is incorrect regarding the ovary in humans?
62. The surface is covered with simple cuboidal epithelium, called the germinal epithelium.
63. Follicles in various phases of development are seen in the ovarian cortex
64. It is connected to the uterus and pelvic floor by tendons
65. It is a primary sex organ
66. Match each item in Column I with one in Column II and select the correct match from the codes given:

COLUMN I
COLUMN II
A Spermatogonia P Secretion of androgens
B Leydig cells
Q Spermiogenesis
C Sertoli cells
R Undifferentiated germ cells
Codes
A B C

1. P Q R
2. R P Q
3. R Q P
4. P R Q
5. Consider the given two statements:
I. Secondary oocyte is fertilized by the sperm.
II. At fertilization, the secondary oocyte completes Meiosis-II
6. Only I is correct
7. Only II is correct
8. Both I and II are correct
9. Both I and II are incorrect
10. The mammary ampulla in the given diagram is shown by:

11. 1
12. 2
13. 3
14. 4
15. Sertoli cells:
I. nourish the developing sperm cells through the stages of spermatogenesis
II. secrete inhibin
III. are activated by luteinizing hormone
16. Only I and II
17. Only I and III
18. Only II and III
19. I, II and III are correct
20. Consider the given two statements:
I. The presence or absence of hymen is not a reliable indicator of virginity or sexual experience.
II. It is a membrane that often covers the opening of vagina partially.
21. Both I and II are correct and II explains I
22. Both I and II are correct and II explains I
23. I is correct and II is incorrect
24. Both I and II are incorrect
25. An infertile couple has been suggested Artificial Insemination into the uterus [IUI]. This should be done:
26. just after the completion of the menstrual flow
27. near the time of ovulation
28. in the middle of the follicular phase
29. after corpus luteum starts the synthesis of progesterone

64. Polar bodies:

1. are formed during both spermatogenesis and oogenesis
2. serve no function
3. act as dumping ground for extra chromosomes
4. are two in number, first is diploid and second is haploid
5. The last of the germ layers to appear in the human embryonic development is the:
6. Ectoderm
7. Endoderm
8. Mesoderm
9. All the three germ layers appear simultaneously
10. As their primary mechanism of action, combined oral contraceptive pills:
11. inhibit follicular development and prevent ovulation
12. increase sperm penetration of cervix by making the cervical secretions thick
13. make uterine endometrium hostile to implantation
14. slow down tubal motility and ova transport interfering with fertilization
15. Vasectomy:
I. is the most effective permanent form of contraception available to men.
II. protects against sexually transmitted infections.
16. Both I and II are correct
17. Only I is correct
18. Only II is correct
19. Both I and II are incorrect
20. What is correct regarding both spermatogenesis and oogenesis?
21. Begin after the onset of puberty
22. The resultant cells of meiosis I are equal in size
23. The resultant cells of meiosis I are unequal in size
24. The resultant gametes are haploid
25. Copper releasing IUDs:
I. are not effective as emergency contraceptives
II. damage sperms and disrupt their motility
26. Both I and II are correct
27. Only I is correct
28. Only II is correct
29. Both I and II are incorrect
30. The foetus is actually differentiated from:
31. the inner cell mass of the blastocyst
32. the trophoblast cells of the blastocyst
33. partly the trophoblast cells but mainly the inner cell mass of the blastocyst
34. theca cells and granulosa cells of the antral follicle
35. Absence of a menstrual period in a woman of reproductive age is called as:
36. Menopause
37. Dysmenorrhoea
38. Menorrhagia
39. Amenorrhoea
40. Epididymis:
I. connects the efferent ducts from the rear of each testicle to its vas deferens
II. store sperms
III. is the place of final maturation of sperms
41. Only I is correct
42. Only I and II are correct
43. Only II and III are correct
44. I, II and III are correct
45. Identify the correct statements:
I. Fertilization occurs in the ampulla of the fallopian tube
II. Implantation occurs at the stage of blastocyst
III. First movements of the foetus are usually observed during the fifth month
46. Only II
47. Only I and II
48. Only II and III
49. I, II and III
50. Although estrogen levels vary through the menstrual cycle, the highest level will be seen:
51. in the middle of the follicular phase after the appearance of LH.
52. near the end of the follicular phase just before ovulation.
53. in the middle of the secretory phase when the corpus luteum is most developed.
54. near the end of the secretory phase just before the onset of the next menstrual cycle.
55. A functional mammary gland is a characteristic feature of:
56. all mammals
57. all female mammals
58. only primate female mammals
59. all female vertebrates
60. Regarding fallopian tubes:
I. The isthmus sits next to the opening of the fallopian tube into the uterus.
II. The ampulla is typically where the fertilization occurs.
61. Both I and II are correct
62. Only I is correct
63. Only II is correct
64. Both I and II are incorrect
65. Human chorionic gonadotropin:
66. is secreted by the ovary and has functions similar to FSH
67. is secreted by the placenta and has functions similar to FSH
68. is secreted by the ovary and has functions similar to LH
69. is secreted by the placenta and has functions similar to LH
70. Match each item in Column I with one in Column II and select the correct match from the codes given:

	COLUMN I [Part of a sperm]		COLUMN II
A	Acrosome	P	Hydrolytic enzymes
B	Neck	Q	Centrioles
C	Head	R	Haploid nucleus
D	Middle piece	S	Mitochondria

Codes

	A	B	C	D
1.	P	Q	R	S
2.	P	Q	S	R
3.	P	S	Q	R
4.	S	R	Q	P

77. The testes of a male child aged four years will have:
78. primary spermatocytes
79. immature sperms
80. spermatogonia
81. spermatids
82. All the following statements regarding Medical Termination of Pregnancy are correct except:
83. It accounts for about $1 / 5$ th of the total number of pregnancies conceived in a year
84. It was legalized by the Government of India in 1975
85. It is considered safe during the first trimester of pregnancy
86. It is legalized induced abortion
87. In the given diagram, the granulosa cells and the zona pellucida are represented respectively by:

	Granulosa cells	Zona pellucida
1.	4	6
2.	3	4
3.	3	6
4.	4	7

80. The arrow in the figure shows:

81. Rete testis
82. Caput epididymis
83. Cauda epididymis
84. Vasa efferentia
85. During puberty, the increased secretion of which of the following causes the male secondary sexual characters to be manifested?
86. GnRH from the hypothalamus
87. FSH from the anterior pituitary
88. LH from the anterior pituitary
89. Testosterone from the testes
90. Spermatogenesis:
91. is enhanced at temperatures slightly less than core body temperature.
92. is enhanced at temperatures slightly more than core body temperature.
93. is reduced at temperatures slightly less than core body temperature.
94. is not affected by the ambient temperature.
95. Consider the given two statements:
I. Sexually transmitted infections can lead to pelvic inflammatory disease.
II. Pelvic inflammatory disease increases the risk of ectopic pregnancy.
96. Only I is correct
97. Only II is correct
98. Both I and II are correct
99. Both I and II are incorrect
100. The first meiotic division in the primary oocyte:
101. occurs after the onset of puberty
102. is completed before the birth
103. begins in foetal life
104. occurs at the time of fertilization
105. Which hormone, also called the 'birth hormone', initiates and sustains labour contractions during parturition?
106. Progesterone
107. Oxytocin
108. Estrogen
109. Relaxin

Zoology - Section B

86. In a menstrual cycle, several days, in the beginning, are infertile [pre-ovulatory] followed by a period of fertility, and then several days just before the next menstruation that are infertile [post-ovulatory]. To find the estimated length of the pre-ovulatory infertile phase, eighteen (18) is subtracted from the length of the woman's shortest cycle. To find the estimated start of the postovulatory infertile phase, eleven (11) is subtracted from the length of the woman's longest cycle.
A woman whose menstrual cycles ranged in length from 30 to 36 days would be estimated to be fertile:
87. for the first 11 days of her cycle
88. on days $12-25$
89. on day 26 onwards
90. for the first 5 days of the cycle
91. Which of the following hormones is most important for supporting pregnancy in a human female?
92. LH
93. FSH
94. Progesterone
95. Estrogen
96. The hormone, mainly, secreted by the ruptured Graafian follicle is :
97. LH
98. FSH
99. Estrogen
100. Progesterone
101. Consider the two statements:
I. In women, abnormally high prolactin level is often associated with amenorrhea.
II. Corpus luteum degenerates early in the event of fertilization
102. Both I and II are correct and II explains I
103. Both I and II are correct but II does not explain I
104. I is correct but II is incorrect
105. I is incorrect but II is correct
106. Menstrual bleed is causally most directly the reset of withdrawal of :
107. Progesterone
108. Estrogen
109. LH
110. FSH
111. In males, the Follicle Stimulating Hormone:
I. stimulates primary spermatocytes to undergo the first division of meiosis, to form secondary spermatocytes.
II. enhances the production of androgen-binding protein by the Sertoli cells of the testes
112. Only I
113. Only II
114. Both I and II
115. Neither I nor II
116. Identify the incorrect statement:
I. Females produce hundreds of oocytes each month in comparison to the millions of sperm cells produced in the same age male.
II. The testes in the male and ovaries in the female can both be found in the pelvic cavity of an early fetus.
117. Only I
118. Only II
119. Both I and II
120. Neither I nor II
121. What is incorrect regarding the human placenta?
122. The first hormone released by the placenta is called the human chorionic gonadotropin hormone.
123. The placenta intermediates the transfer of nutrients between mother and fetus.
124. Deoxygenated fetal blood passes through umbilical veins to the placenta.
125. It is chorioallantoic.
126. The substrate that is used by the sperms for their metabolism is contributed in the secretions of:
127. Seminal vesicles
128. Prostate
129. Bulbourethral glands
130. Glands of Littre
131. The hormone responsible for the fact that the basal body temperature in a female rises at the time of ovulation is
132. Estrogen
133. Progesterone
134. LH
135. FSH
136. Measuring the levels of which of the following hormones would have the strongest prediction of ovulation timing in a female?
137. LH
138. FSH
139. Estrogen
140. Progesterone
141. The hormone, present in the fluid surrounding the released secondary oocytes, helps establish a chemical concentration gradient responsible for most sperms reaching the following tube where the secondary oocyte is present, is
142. LH
143. FSH
144. Estrogen
145. Progesterone
146. Consider the two statements:
I. Often, HCG medication is used as an LH substitute
II. It activates the same receptor.
147. Both I and II are correct and II explains I
148. Both I and II are correct but II does not explain I
149. I is correct but II is incorrect
150. I is incorrect but II is correct
151. The mass of spongy tissue surrounding the male urethra within the penis is called
152. corpus spongiosum
153. corpus cavernosam
154. corpus luteum
155. macula lutea
156. Zona pellucida:
I. is made up of glycoproteins
II. helps prevent polyspermy
III. helps prevent ectopic pregnancy
157. Only I and II
158. Only I and III
159. Only II and III
160. I, II and III

Chemistry - Section A

101. Case study :

A compound is made up of A, B, and C atoms. In a cubic unit cell, A atoms are present on alternate corners, B atoms are present on alternate faces and C atoms are present on alternate edges.
The simplest formula of the compound is:

1. $\mathrm{AB}_{2} \mathrm{C}$
2. $\mathrm{A}_{2} \mathrm{BC}$
3. $\mathrm{AB}_{2} \mathrm{C}_{2}$
4. ABC_{2}
5. Case study :

A compound is made up of A, B and C atoms. In a cubic unit cell, A atoms are present on alternate corners, B atoms are present on alternate faces and C atoms are present on alternate edges.
A rectangular plane is placed in the unit cell and all the atoms are removed which are touching the rectangular plane. After the removal of atoms, the simplest formula of the compound cannot be

1. $\mathrm{AB}_{2} \mathrm{C}_{2}$
2. AB_{2}
3. AC_{2}
4. ABC_{2}
5. Case study :

A compound is made up of A, B, and C atoms. In a cubic unit cell, A atoms are present on alternate corners, B atoms are present on alternate faces and C atoms are present on alternate edges.
A body diagonal line is placed in the unit cell and all the atoms are removed which are touching the body diagonal line. After removal of atoms, the simplest formula of the compound is :

1. $\mathrm{A}_{3} \mathrm{~B}_{4} \mathrm{C}_{8}$
2. $\mathrm{AB}_{2} \mathrm{C}_{2}$
3. $\mathrm{A}_{3} \mathrm{~B}_{8} \mathrm{C}_{4}$
4. $\mathrm{A}_{3} \mathrm{~B}_{8} \mathrm{C}_{8}$
5. Assertion: Due to metal deficiency defect, ZnO gives the appearance of yellow color
Reason: O^{2-} ion occupies anion vacancy and forms F center
6. Both assertion and reason are true, and the reason is the correct explanation of the assertion
7. Both assertion and reason are true, but the reason is not the correct explanation of the assertion
8. Assertion is true but the reason is false
9. Both assertion and reason are false
10. In a face-centered cubic unit cell, the relation between radius (r) and cell edge length (a) is
11. $4 \mathrm{r}=\mathrm{a} \sqrt{3}$
12. $4 \mathrm{r}=\mathrm{a} \sqrt{2}$
13. $r=a / 2$
14. $4 \mathrm{r}=\mathrm{a} / \sqrt{2}$
15. The correct statement regarding ferrimagnetic substance is
16. The observed magnetic moment is equal to the theoretical magnetic moment
17. The observed magnetic moment is less than the theoretical magnetic moment
18. The observed magnetic moment is more than the theoretical magnetic moment
19. All of the above
20. The number of Ca^{2+} ions and F^{-}ions in the unit cell of CaF_{2}, respectively, are
21. $8 \& 4$
22. $1 \& 2$
23. $2 \& 4$
24. $4 \& 8$
25. In CsCl structure, the cell edge length (a) and radius of Cl^{-}ion (r^{-}) is 400 pm and 200 pm respectively. The radius of Cs^{+}ion $\left(\mathrm{r}^{+}\right)$will be
26. 73.2 pm
27. 146.4 pm
28. 219.6 pm
29. None of these
30. Our of the following, the most unsymmetrical crystal system and bond parameters of this crystal system, respectively, are -
31. Monoclinic and $a \neq b \neq c$
32. Triclinic and $a \neq b=c$
33. Monoclinic and $a \neq b=c$
34. Triclinic and $a \neq b \neq c$
35. Which of the following solutions has the highest freezing point?
36. 0.02 M NaCl
37. 0.05 M Urea
38. $0.01 \mathrm{M} \mathrm{MgCl}_{2}$
39. 0.01 M KCl
40. If A (volatile solute) and B (volatile solvent) form an azeotropic mixture then the correct statement regarding the above azeotropic mixture will be -
41. Mole fraction of A in the vapour phase is more than the mole fraction of A or B in liquid phase
42. Mole fraction of A or B in the vapour phase is more than the mole fraction of A or B in liquid phase
43. Mole fraction of A or B in the vapour phase is same as the mole fraction of A or B in liquid phase
44. Mole fraction of A and B in the vapour phase is less
than the mole fraction of A or B in liquid phase
45. The molarity of NaNO_{3} solution is 2 M . The density of solution is 1.2 gram $/ \mathrm{ml}$. The molality of solution will be (Molar weight of $\mathrm{NaNO}_{3}=85$)
46. 1.94 m
47. 2 m
48. 2.06 m
49. 1.85 m
50. The correct formula of Roult's law for non-volatile and electrolyte solute is
$\mathrm{P}=$ Vapour pressure of pure solvent
$\mathrm{P}_{\mathrm{s}}=$ vapour pressure of solution
i = Van't Hoff Factor
$\mathrm{n}=$ Moles of solute
$\mathrm{N}=$ Moles of solvent
51. $\frac{P-P_{s}}{P}=\mathrm{i}\left(\frac{n}{n+N}\right)$
52. $\frac{P-P_{s}}{P_{s}}=\mathrm{i}\left(\frac{n}{n+N}\right)$
53. $\frac{P-P_{s}}{P}=\frac{i n}{i n+N}$
54. $\frac{P-P_{s}}{P_{s}}=\frac{i n}{i n+N}$
55. A volatile solute (A) is mixed with a volatile solvent
(B). For this solution vapour pressure is represented as
$\mathrm{P}=125 \mathrm{X}_{\mathrm{A}}+45$
($\mathrm{X}_{\mathrm{A}}=$ Mole fraction of A in liquid phase)
The vapour pressures of A and B in a pure state, respectively, are
56. 125 torr \& 45 torr
57. 170 torr $\& 45$ torr
58. 125 torr $\& 170$ torr
59. 45 torr $\& 170$ torr
60. The vapour pressures of benzene and toluene in pure states are 700 mm of Hg and 600 mm of Hg respectively. If equal masses of benzene and toluene are mixed together then the total vapour pressure of the solution will be approximately
61. 620 mm of Hg
62. 640 mm of Hg
63. 654 mm of Hg
64. 674 mm of Hg
65. The boiling point of 1 M Urea solution is $101^{\circ} \mathrm{C}$. At the same temperature, the boiling point of 1 M KCl solution will be
66. $101^{\circ} \mathrm{C}$
67. $102^{\circ} \mathrm{C}$
68. $202{ }^{\circ} \mathrm{C}$
69. Cannot be predicted (Insufficient Data)
70. Which metal evolves hydrogen gas with dilute HNO_{3} ?
71. Mn
72. Zn
73. Cu
74. Fe
75. Consider the galvanic cell $\mathrm{Pt}, \mathrm{H}_{2}\left|\mathrm{H}^{+} \| \mathrm{H}^{+}\right| \mathrm{H}_{2}$, Pt. If two solutions whose pH values are 3 and 5 are given then which solution should be kept at cathode for a spontaneous cell and e.m.f (electromotive force) of this spontaneous cell, respectively will be ($\frac{2.303 R T}{F}=0.059$)
76. solution of $\mathrm{pH}=3$ and +0.118 V
77. solution of $\mathrm{pH}=5$ and +0.118 V
78. solution of $\mathrm{pH}=3$ and +0.059 V
79. solution of $\mathrm{pH}=5$ and +0.059 V
80. The standard reduction potential of $\mathrm{Zn}^{2+} / \mathrm{Zn}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is -0.76 and +0.34 V respectively. The oxidising agent and reducing agent, respectively, are
81. $\mathrm{Cu} \& \mathrm{Zn}^{2+}$
82. $\mathrm{Zn} \& \mathrm{Cu}$
83. $\mathrm{Cu}^{2+} \& \mathrm{Zn}^{2+}$
84. $\mathrm{Cu}^{2+} \& \mathrm{Zn}$
85. When an electrolytic solution is diluted then the incorrect statement from the following is-
86. Specific conductivity increases
87. Molar conductivity increases
88. Equivalent conductivity increases
89. Specific conductivity decreases
90.

The value of E_{3}^{o} for the above reaction will be

1. +0.45 V
2. +0.15 V
3. +0.225 V
4. -0.225 V
5. Aqueous NaCl solution is electrolyzed using platinum electrodes. It can be concluded that the pH of the solution
6. Increases
7. Decreases
8. Unchanged
9. Can't be predicted
10. When a 10 -ampere current is passed through acidulated water ($\mathrm{H}_{2} \mathrm{O}$ containing some $\mathrm{H}_{2} \mathrm{SO}_{4}$), 2.24 litres H_{2} gas is evolved at NTP. The duration for which current is passed through acidulated water is
11. 965 seconds
12. 1930 seconds
13. 3860 seconds
14. 7720 seconds
15. When CuSO_{4} solution using inert electrodes is electrolysed then the correct statement amongst the following is
16. Weight of anode decreases
17. H_{2} gas is evolved at cathode
18. pH of the solution decreases
19. pH of the solution is unchanged
20. Consider the following cell:
$\mathrm{Ag}\left|\mathrm{AgCl} \| C l^{-}\left(C_{1}\right), \mathrm{AgCl}\right| \mathrm{Ag}$.
The solubility product of AgCl is K_{sp}. The $\mathrm{E}_{\text {cell }}$ of the above cell will be $\left(\frac{2.303 R T}{F}=0.059\right)$
21. $\frac{0.059}{2} \log \frac{C_{1}}{\sqrt{K_{s p}}}$
22. $\frac{0.059}{1} \log \frac{C_{1}}{\sqrt{K_{s p}}}$
23. $\frac{0.059}{2} \log \frac{K_{s p}}{C_{1}}$
24. $\frac{0.059}{1} \log \frac{\sqrt{K_{s p}}}{C_{1}}$
25. The molar conductivity of $0.05 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ is $20 \mathrm{~S} \mathrm{~cm}{ }^{2}$ mol^{-1}. The molar conductivities of NH_{4}^{+}and Cl^{-}ion at infinite dilution are $74 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $26 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively. The dissociation constant of $\mathrm{NH}_{4} \mathrm{Cl}$ will be
26. 2.5×10^{-3}
27. 2×10^{-3}
28. 2.5×10^{-4}
29. 2×10^{-4}
30. Assertion: Inversion of cane sugar is a first-order reaction
Reason: It is the pseudo unimolecular reaction
31. Both assertion and reason are true, and the reason is the correct explanation of the assertion
32. Both assertion and reason are true, but the reason is not the correct explanation of the assertion
33. Assertion is true but the reason is false
34. Both assertion and reason are false
35. Consider the following reversible reaction

(K_{1} is the rate constant for the forward reaction and K_{2} is the rate constant for the backward reaction). The rate law for the appearance of NH_{3} is
36. $K_{2}\left[N H_{3}\right]^{2}-K_{1}\left[N_{2}\right]\left[H_{2}\right]^{3}$
37. $2 \mathrm{~K}_{1}\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}-2 \mathrm{~K}_{2}\left[\mathrm{NH}_{3}\right]^{2}$
38. $2 \mathrm{~K}_{2}\left[\mathrm{NH}_{3}\right]^{2}-2 \mathrm{~K}_{1}\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}$
39. $\mathrm{K}_{1}\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}-\mathrm{K}_{2}\left[\mathrm{NH}_{3}\right]^{2}$
40. The temperature coefficient of a reaction is 2.5 . How many times the rate of reaction increases when the temperature is increased from $30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$?
41. 7.5
42. 15.625
43. 6.25
44. 32.5
45. For an exothermic reaction, the value of activation energy for forward reaction is
46. Less than $\Delta \mathrm{H}$
47. More than $\Delta \mathrm{H}$
48. Equal to $\Delta \mathrm{H}$
49. All of the above are possible
50. Consider the reaction, $\mathrm{A}+\mathrm{B} \rightarrow$ Products. On keeping concentration of B as fixed and increasing the concentration of A 3 times. The rate of reaction increases 27 times. Now the concentration of A and B both are doubled and it is found that the rate of reaction becomes 8 times. The order with respect to A and B, respectively, are
51. 3 and 1
52. 2 and 1
53. 3 and 0
54. 2 and 0
55. The half-life period of a radioactive substance is 69.3 minutes. In how much time will it disintegrate to 20% of its original amount?
56. 80.5 minutes approximately
57. 161 minutes approximately
58. 192 minutes approximately
59. 235 minutes approximately
60. For the reaction, $\mathrm{A}+\mathrm{B} \rightarrow$ Products

Experiment	[A]	[B]	Rate $\left(\mathrm{mole} \mathrm{litre}^{-1} \mathrm{~min}^{-1}\right)$
1.	0.01	0.01	2×10^{-4}
2.	0.02	0.01	4×10^{-4}
3.	0.01	0.02	8×10^{-4}

The rate law and unit of rate constant respectively, are

1. Rate $=K[A]^{2}[B]$ and litre ${ }^{2}$ mole $^{-2} \min ^{-1}$
2. Rate $=\mathrm{K}[\mathrm{A}]^{3}$ and litre ${ }^{2} \mathrm{~mole}^{-2} \mathrm{~min}^{-1}$
3. Rate $=\mathrm{K}[\mathrm{A}][\mathrm{B}]^{2}$ and litre $\mathrm{mole}^{-1} \mathrm{~min}^{-1}$
4. Rate $=\mathrm{K}[\mathrm{A}][\mathrm{B}]^{2}$ and litre ${ }^{2}$ mole $^{-2} \mathrm{~min}^{-1}$
5. If the concentration of a reactant increases 2 times then the half-life of the same reactant is observed to decrease 4 times. The order of the reaction will be
6. 1
7. 2
8. 3
9. Cannot be predicted
10. A first order reaction completes 20% in 10 minutes. The time required for 99.9% completion of the reaction will be
11. 100 minutes approximately
12. 200 minutes approximately
13. 300 minutes approximately
14. 400 minutes approximately

Chemistry - Section B

136. How many carbon atoms are present in a cubic unit cell of diamond?
137. 2
138. 4
139. 6
140. 8
141. AB salt has a similar structure as rock salt structure. The radius of the cation is $0.32 \AA$. The maximum radius of the anion can be
142. 77.29 pm
143. $0.4371 \AA$
144. $0.57 \AA$
145. 97 pm
146. The incorrect statement regarding inverse spinel structure $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ is
147. O^{2-} ions occupy ccp lattice
148. Fe^{3+} ions are equally distributed between tetrahedral and octahedral voids
149. The occupancy of octahedral voids is 50%
150. The occupancy of tetrahedral voids is 25%
151. At what percentage composition do ethanol and water form an azeotropic mixture?
152. 50% Ethanol and 50% water
153. 95.6% Ethanol and 4.4% water
154. 4.4% Ethanol and 95.6% water
155. None of the above
156. How much ice will be separated if 30 grams of a nonvolatile and non-electrolyte solute is added in 400 gm of water at $-10{ }^{\circ} \mathrm{C}$? (Molar weight of solute $=62, \mathrm{~K}_{\mathrm{f}}$ for $\mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{~K} / \mathrm{m}$)
157. 110 gm
158. 220 gm
159. 310 gm
160. 360 gm
161. 9.5 gram MgCl_{2} is dissolved in 500 g of water. The difference in boiling point and freezing point of solution will be $\left(\mathrm{K}_{\mathrm{b}}\right.$ for $\mathrm{H}_{2} \mathrm{O}=0.52 \mathrm{~K} / \mathrm{m}, \mathrm{K}_{\mathrm{f}}$ for $\mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{~K} / \mathrm{m}$, Molar weight of $\mathrm{MgCl}_{2}=95$) (assume that MgCl_{2} is 100\% dissociated)
162. $103.57{ }^{\circ} \mathrm{C}$
163. $102.428{ }^{\circ} \mathrm{C}$
164. 374.428 K
165. 372.196 K
166. Acetic acid dimerises in benzene. The value of Van't Hoff factor (i) for the dimerisation of acetic acid is 0.7. The percetage dimerisation of acetic acid will be-
167. 30%
168. 60%
169. 70%
170. 90%
171. The vapour pressure of a solution is 2% less than the vapour pressure of pure water. The molality of the solution is approximately
172. 0.92
173. 1.11
174. 1.26
175. 1.52
176. Which of the following is a feasible reaction?
177. $2 \mathrm{KCl}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{KBr}+\mathrm{Cl}_{2}$
178. $2 \mathrm{KBr}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}+\mathrm{Br}_{2}$
179. $2 \mathrm{KClO}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KIO}_{3}+\mathrm{Cl}_{2}$
180. $2 \mathrm{KIO}_{3}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{KBrO}_{3}+\mathrm{l}_{2}$
181. When CuSO_{4} solution using copper electrodes is electrolyzed then the incorrect statement amongst the following is
182. Weight of cathode increases
183. O_{2} gas is evolved at the anode
184. Weight of anode decreases
185. pH of the solution remains same
186. Consider the following cells

Cell- $1 \rightarrow \mathrm{Zn}\left|\mathrm{Zn}^{2+} \| \mathrm{Cu}^{2+}\right| \mathrm{Cu}$
Cell- $2 \rightarrow \mathrm{Cu}\left|\mathrm{Cu}^{2+} \| \mathrm{Zn}^{2+}\right| \mathrm{Zn}$

$$
\begin{gathered}
\left(E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{o}=+0.34 \mathrm{~V}\right. \\
E_{\mathrm{Zn}^{2+}}^{o} / \mathrm{Zn} \\
\left.=-0.76 \mathrm{~V},\left[\mathrm{Zn}^{2+}\right]=1 \mathrm{M}\right)
\end{gathered}
$$

The maximum approximate concentration of $\left[\mathrm{Cu}^{2+}\right]$ for the working of cell-2 would be

1. $10^{-15} \mathrm{M}$
2. $10^{-25} \mathrm{M}$
3. $10^{-37} \mathrm{M}$
4. Cell-2 cannot work at any concentration of $\left[\mathrm{Cu}^{2+}\right]$
5. The value of rate constant depends on
6. Concentration
7. Catalyst
8. Temperature
9. Both (2) and (3)
10. The maximum value of the rate constant can be achieved by
11. Decreasing the activation energy to zero
12. Increasing the temperature up to infinity
13. Both (1) and (2)
14. None of the above
15. The correct statement regarding inversion of cane sugar is
16. Molecularity of reaction is two and order of reaction is one
17. Molecularity as well as order of reaction, both are one
18. Molecularity as well as order of reaction, both are two
19. Molecularity of reaction is one and order of reaction is two
20. Consider the following first order reaction:

$$
\mathrm{A}(\mathrm{~g}) \rightarrow \mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g})
$$

The initial pressure is P and the pressure at a time ' t ' is P_{t} ($\mathrm{P}_{\mathrm{t}}>\mathrm{P}$). The value of rate constant (K) will be

1. $\frac{2.303}{t} \log \frac{P}{P_{t}}$
2. $\frac{2.303}{t} \log \frac{P}{2 P-P_{t}}$
3. $\frac{2.303}{t} \log \frac{2 P}{3 P-P_{t}}$
4. $\frac{2.303}{t} \log \frac{2 P}{2 P-P_{t}}$

Physics - Section A

151.

A pair of field lines are drawn, connecting the charges q_{1}, q_{2} in addition to the straight field line connecting them. From the above diagram,

1. $\mathrm{q}_{1}>0, \mathrm{q}_{2}<0$ and $\left|\mathrm{q}_{1}\right|>\left|\mathrm{q}_{2}\right|$
2. $\mathrm{q}_{1}<0, \mathrm{q}_{2}>0$ and $\left|\mathrm{q}_{1}\right|>\left|\mathrm{q}_{2}\right|$
3. $\mathrm{q}_{1}>0, \mathrm{q}_{2}<0$ and $\left|\mathrm{q}_{1}\right|<\left|\mathrm{q}_{2}\right|$
4. $\mathrm{q}_{1}<0, \mathrm{q}_{2}>0$ and $\left|\mathrm{q}_{1}\right|<\left|\mathrm{q}_{2}\right|$
5. Three charges $q, q,-q$ are placed at the three corners of an equilateral triangle ABC , of side 'a'.

The mid-point of side AB is P while the circumcenter of ABC is O . Let the electric field at P be E_{P} and that at O be E_{O}.
Then, $\mathrm{E}_{\mathrm{O}}: \mathrm{E}_{\mathrm{P}}=$

1. $\frac{2}{9}$
2. $\frac{4}{9}$
3. $\frac{9}{2}$
4. $\frac{9}{4}$
5. A point charge ' q ' is placed at the center of a spherical cavity at the center of a conducting sphere. The sphere is initially uncharged. The radius of the cavity is 'a' and that of the sphere is ' 2 a '. Let the charge on the outer surface of the sphere be Q .
Then,
6. q, Q are of the same sign and $|\mathrm{q}|=|\mathrm{Q}|$
7. q, Q are of opposite sign and $|\mathrm{q}|=|\mathrm{Q}|$
8. q, Q are of same sign and $|\mathrm{q}|<|\mathrm{Q}|$
9. q, Q are of opposite sign and $|\mathrm{q}|>|\mathrm{Q}|$
10. A uniformly charged sphere carrying a charge Q distributed uniformly on its outer surface is placed in an isotropic medium of dielectric constant ' K '.

The electric field within the medium due to the charge Q at some point P is \vec{E}_{Q}. The Electric field at the same point P due to induced charge within the medium is \vec{E}_{m}. Then,

1. $\left|\vec{E}_{m}\right|=\left|\frac{\vec{E}_{Q}}{K}\right|$, and the two fields are in opposite directions
2. $\left|\vec{E}_{Q}\right|=\left|\frac{\vec{E}_{m}}{K}\right|$, and the two fields are in the same direction
3. $\left|\vec{E}_{Q}+\vec{E}_{m}\right|=\left|\frac{\vec{E}_{Q}}{K}\right|$, and the two fields are in opposite directions
4. $\left|\vec{E}_{Q}+\vec{E}_{m}\right|=\left|\frac{\vec{E}_{m}}{K}\right|$, and the two fields are in the same direction
5. Identical point charges (q each), are placed at the eight corners of a cube of side 'a'. When one of the charges is removed, the electric field at the center becomes E_{c}.
Now, identical point charges (same magnitude q each), are placed at the four corners of a square of side 'a'. When one of the charges is removed, the electric field at the center becomes E_{S}. Then,
6. $\frac{E_{s}}{2}=\frac{E_{C}}{3}$
7. $\frac{E_{s}}{3}=\frac{E_{C}}{2}$
8. $\frac{E_{s}}{\sqrt{2}}=\frac{E_{C}}{\sqrt{3}}$
9. $\frac{E_{s}}{\sqrt{3}}=\frac{E_{C}}{\sqrt{2}}$
10. Two infinitely large plane parallel sheets carry uniform surface charge densities $+\sigma,-\sigma$ and are placed a distance ' d ' apart. The electric fields in the regions (1), (2), (3) are E_{1}, E_{2}, E_{3} along the direction ' x ' which is perpendicular to the two planes.

11. $\mathrm{E}_{1}<0, \mathrm{E}_{2}>0, \mathrm{E}_{3}<0$
12. $\mathrm{E}_{1}<0, \mathrm{E}_{2}=0, \mathrm{E}_{3}<0$
13. $\mathrm{E}_{1}=0, \mathrm{E}_{2}>0, \mathrm{E}_{3}=0$
14. $\mathrm{E}_{1}<0, \mathrm{E}_{2}>0, \mathrm{E}_{3}>0$
15. A charged particle of charge q and mass ' m ' is projected vertically upward with a speed u. Acceleration due to gravity ('g') acts downwards, while a uniform Electric field E acts along the horizontal. The speed of the projectile's impact on the horizontal is v, while the horizontal range is R . Then,
16. $v^{2}=u^{2}+2 g R$
17. $v^{2}=u^{2}+2 g R\left(\frac{q E}{m g}\right)$
18. $v^{2}=u^{2}+g R$
19. $v^{2}=u^{2}+g R\left(\frac{q E}{m g}\right)$
20. A dipole (p) is placed so that it is always aligned along the x -axis but it can undergo displacement along the x -axis. The dipole is placed exactly midway between two fixed charges -Q and Q, in two possible ways.
21. Which of the following field configurations is/are possible?
Note: A, B, C are conductors. Other charges may be present in the vicinity.

22. A point charge ' q ' is placed at a distance $2 r$ from the center of a conducting sphere of radius r, and the sphere is earthed. The conducting sphere acquires a charge q_{1}, which resides on its surface. Then,
23. $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{A}}<\mathrm{V}_{\mathrm{P}}$
24. $\mathrm{V}_{\mathrm{A}}>\mathrm{V}_{\mathrm{O}}, \mathrm{V}_{\mathrm{A}}>\mathrm{V}_{\mathrm{P}}$
25. $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{P}}$
26. $q_{1}=-q$
27. $q_{1}=-\frac{q}{2}$
28. $q_{1}=-\frac{q}{4}$
29. $q_{1}=-2 q$

地

Hint: Use the fact that the potential at the center of the sphere is zero.
162. A pair of concentric conducting spherical shells of radii a, b are given charges Q_{1}, Q_{2} respectively.

If $\mathrm{Q}_{1}=+\mathrm{Q}$ and $\mathrm{Q}_{2}=-\mathrm{Q}$, and the potential difference between the spheres be V , the ratio $\frac{Q}{V}$ is their capacitance. The capacitance of this configuration is: $\left(\mathrm{A}_{\mathrm{a}}=4 \pi \mathrm{a}^{2}, \mathrm{~A}_{\mathrm{b}}=\right.$ $4 \pi \mathrm{~b}^{2}$, separation $=\mathrm{d}=\mathrm{b}-\mathrm{a}$)

1. $\varepsilon_{0} \frac{A_{a}}{d}$
2. $\varepsilon_{0} \frac{\left(A_{a}+A_{b}\right) / 2}{d}$
3. $\varepsilon_{0} \frac{\sqrt{A_{a} A_{b}}}{d}$
4. $\varepsilon_{0} \frac{A_{b}}{d}$
5. Two metallic plates are placed parallel to each other, at a separation ' d '. A dielectric $(\mathrm{K}=2)$ of width $\mathrm{d} / 3$ is inserted into space between the plates, parallel to plates: the separation between the plates being d. The capacitance of the plates
6. increases by 20%
7. decreases by 20%
8. increases by 33\%
9. decreases by 25\%
10. A metallic sphere of radius R is given a charge Q. The energy stored in the sphere due to this charge is
11. $\frac{Q^{2}}{4 \pi \varepsilon_{0} R}$
12. $\frac{2 Q^{2}}{4 \pi \varepsilon_{0} R}$
13. $\frac{1}{2} \frac{Q^{2}}{4 \pi \varepsilon_{0} R}$
14. $\frac{Q^{2}}{16 \pi \varepsilon_{0} R}$
15. Two identical capacitors, each of capacitance C, are connected in series and are charged by means of an ideal battery of emf E. They are disconnected and reconnected in parallel and connected to the same battery. During this reconnection, the positive terminals of the capacitors are connected to the positive terminal of the battery and their negative terminals are similarly connected together. Let, the work done by the battery during the first connection be W_{1}, and during the second be W_{2}. Then,
16. $\mathrm{W}_{1}=\mathrm{W}_{2}$
17. $2 \mathrm{~W}_{1}=\mathrm{W}_{2}$
18. $\mathrm{W}_{1}=2 \mathrm{~W}_{2}$
19. $4 \mathrm{~W}_{1}=\mathrm{W}_{2}$
20. N capacitances, C each, are available to be connected in series or in parallel. The ratio of the minimum $\left(\mathrm{C}_{\mathrm{min}}\right)$ and maximum ($\mathrm{C}_{\max }$) capacitance that can be formed from these is $\frac{C_{\max }}{C_{\text {min }}}=$
21. N
22. N^{2}
23. N^{3}
24. \sqrt{N}
25. A dielectric slab is inserted between the plates of an isolated charged capacitor. Which of the following remains unchanged?
(I) The charge on the plates
(II) The potential difference between the plates
(III) The energy stored in the capacitor
26. I only
27. I, II
28. I, III
29. I, II, III
30. A parallel plate capacitor (C) is charged by connecting it to a battery (emf E). A dielectric slab is inserted into the space between the plates.
(I) The charge on the plates increases.
(II) The energy stored in the capacitor increases.
(III) Work is done by the battery as the slab is inserted.
31. I, II are true
32. I, III are true
33. Only I is true
34. I, II, III are true
35. Find the charge on the $3 \mu \mathrm{~F}$ capacitor.

36. $1.5 \mu \mathrm{C}$
37. $3 \mu \mathrm{C}$
38. $4.5 \mu \mathrm{C}$
39. $9 \mu \mathrm{C}$
40. Initially, uncharged capacitors are connected in a circuit, as shown in the diagram. The potentials at C, D satisfy: $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{D}}$
Then,

41. $C_{1} C_{2}=C_{3} C_{4}$
42. $\frac{C_{1}}{C_{4}}=\frac{C_{2}}{C_{3}}$
43. $\frac{C_{1}}{C_{3}}=\frac{C_{2}}{C_{4}}$
44. $C_{1} C_{3}=C_{2} C_{4}$
45. The capacitors are initially uncharged. The three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are maintained at potentials $\mathrm{V}_{\mathrm{A}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=$ 1 V and $\mathrm{V}_{\mathrm{C}}=1 \mathrm{~V}$. The potential at $\mathrm{X}, \mathrm{V}_{\mathrm{X}}=$

46. 2 V
47. 1.5 V
48. 3 V
49. 0.5 V
50. Two capacitors, one of $3 \mu \mathrm{~F}$ and the other of $1 \mu \mathrm{~F}$ are charged to $2 \mathrm{~V}, 4 \mathrm{~V}$ and are connected to each other in either of the two ways: their like terminals together (A) or unlike (i.e. oppositely charged) terminals together (B). The potential differences are $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$ in these cases. Then,
51. $\mathrm{V}_{\mathrm{A}}=2 \mathrm{~V}_{\mathrm{B}}$
52. $\mathrm{V}_{\mathrm{A}}=4 \mathrm{~V}_{\mathrm{B}}$
53. $\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}_{\mathrm{B}}$
54. $V_{A}=6 V_{B}$
55. A uniformly increasing current flows through a 30Ω resistance, as shown in the graph.

The thermal energy generated in the resistance due to Joule heating is

1. 240 J
2. 480 J
3. 160 J
4. 320 J
5. Two non-ideal batteries are connected in parallel: Battery of EMF E_{1}, resistance r_{1} and of EMF E_{2}, resistance r_{2}. The resulting equivalent battery has EMF 'E', resistance r. If $r_{1}<r_{2}$,
6. $\left|E-E_{1}\right|<\left|E-E_{2}\right|$
7. $\left|\mathrm{E}+\mathrm{E}_{1}\right|<\left|\mathrm{E}+\mathrm{E}_{2}\right|$
8. $\left|E-E_{1}\right|>\left|E-E_{2}\right|$
9. $\left|E+E_{1}\right|>\left|E+E_{2}\right|$
10. Several resistances $R_{1}, R_{2}, \ldots R_{n}$ are connected in parallel. The equivalent resistance of the combination is R.

Assertion: The fractional error in R is most affected by that of the smallest resistance in the combination, other things being equal.
Reason: In parallel, the conductances add. The contribution to the overall error in the conductance is largest for the largest conductance or the smallest resistance.

1. Both assertion and reason are true, and reason is the correct explanation of the assertion.
2. Both assertion and reason are true, but reason is not the correct explanation of the assertion.
3. Assertion is true but reason is false.
4. Assertion is false but reason is true.
5. All the resistances shown in the network are equal to 1Ω, while the EMFs of the cells are 2 V . The current flowing through the branch AC is

6. 1 A
7. 2 A
8. 4 A
9. 6 A
10. In the circuit shown in the diagram, the resistance ' r ' is unknown but fixed. The EMF 'E' can be varied and the current (i) passing through the ammeter A can be measured in magnitude only.

When the EMF ' E ' is adjusted so that the current in the ammeter A is zero, then the value of this EMF is E_{0}.

1. $\mathrm{E}_{0}=16 \mathrm{~V}$ if $\mathrm{r}=8 \Omega$
2. $\mathrm{E}_{0}=10 \mathrm{~V}$ if $\mathrm{r}=2 \Omega$
3. $\mathrm{E}_{0}=5 \mathrm{~V}$ if $\mathrm{r}=1 \Omega$
4. $\mathrm{E}_{0}<20 \mathrm{~V}$ no matter what the value of r .
5. In the circuit shown in the diagram, the resistance ' r ' is unknown but fixed. The EMF 'E' can be varied and the current (i) passing through the ammeter A can be measured in magnitude only.

For a particular situation, it is observed that when $\mathrm{E}=4.8$ V and when $\mathrm{E}=3.2 \mathrm{~V}$, the ammeter gives the same reading in magnitude. Then, the value of the resistance r is

1. 1Ω
2. 2Ω
3. 1.6Ω
4. $\frac{2}{1}$
5. $\frac{1}{1}$
6. $\frac{5}{3}$
7. In a Wheatstone Bridge arrangement, as shown in the figure, the bridge is balanced. However, when the resistances in the arms P, Q are switched, the bridge is balanced only when R is replaced by 4 R in the other two arms. If the value of R is 100Ω, that of S is

8. 100Ω
9. 50Ω
10. 200Ω
11. 400Ω
12. A wire is connected to form an equilateral triangle $A B C$, each side having a resistance of 4Ω. The vertex C is maintained at zero volt $\left(\mathrm{V}_{\mathrm{C}}=0\right)$, currents flowing in at A and B are as shown in the figure. The ratio of the potentials at D and $\mathrm{E}\left(i . e . \frac{V_{D}}{V_{E}}\right)$ equals

$$
\left(\mathrm{V}_{\mathrm{C}}=0\right)
$$

1. $\frac{3}{1}$
2. A capacitor is being charged through a resistance, R. The capacitor was initially uncharged, and gets 75\% charged in 20 s. If the capacitor is now allowed to discharge, it will lose 50% of its initial charge in
(Take $\left(\frac{3}{4}\right)^{2.4} \approx \frac{1}{2}$, if required)
3. 20 s
4. 48 s
5. 10 s
6. 24 s
7. AB is a 20Ω resistor with a tapping point C that can be moved along AB . The resistances in AC, BC are proportional to the lengths $A C, B C$. Initially, C is at the mid-point of $A B$ and the circuit is switched on.

If the tapping point C is moved so that the length $B C$ is reduced to half its initial value, then the voltage across the 15Ω resistor

1. increases by 1 V
2. decreases by 1 V
3. increases by 3 V
4. decreases by 3 V
5.

In the above circuit, let the charges stored in the two capacitors $3 \mu \mathrm{~F}, 2 \mu \mathrm{~F}$ be $\mathrm{q}_{1}, \mathrm{q}_{2}$. Then, the ratio $\mathrm{q}_{1}: \mathrm{q}_{2}$ is

1. 1
2. $\frac{3}{2}$
3. $\frac{9}{4}$
4. $\frac{4}{9}$
5. The potential difference between the ends of a 12 V battery when it is being charged by a 2 A charger is found to be 13.2 V .
If this battery is connected in a circuit with a 6Ω resistance, the current will be nearly
6. 2 A
7. 1 A
8. 1.8 A
9. 2.2 A
10. The circuit shown in the adjacent diagram is switched on with the capacitors uncharged. It is observed that $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{D}}$ at all times. Then,

11. $\frac{R_{1}}{R_{2}}=\frac{C_{1}}{C_{2}}$
12. $\sqrt{\frac{R_{1}}{R_{2}}}=\frac{C_{1}}{C_{2}}$
13. $\frac{R_{1}}{R_{2}}=\sqrt{\frac{C_{1}}{C_{2}}}$
14. $\frac{R_{1}}{R_{2}}=\frac{C_{2}}{C_{1}}$

Physics - Section B

186. A thin uniform rod of mass M and length L is suspended from one of its ends, ' A ', so that it can rotate freely about it. A charge 'q' is fixed to its lower end B. A uniform horizontal Electric field is switched on and the rod rotates about A, finally coming to equilibrium making an angle of 45° with the vertical. If the acceleration due to gravity is ' g ', then

187. $\mathrm{qE}=\mathrm{Mg}$
188. $2 \mathrm{qE}=\mathrm{Mg}$
189. $\mathrm{qE}=2 \mathrm{Mg}$
190. $\sqrt{2} q E=M g$
191. Two very long insulated glass rods are charged uniformly by giving them identical charges ' q ', each. The rods have lengths L each and are placed parallel to each other at a distance 'r' apart, where $\mathrm{r} \ll \mathrm{L}$. Then, the electric force acting between the rods is proportional to
192. $\frac{1}{r^{2}}$
193. $\frac{1}{r}$
194. r
195. $\frac{1}{r^{3}}$
196. A sector of a circle (radius : R) carries a uniform surface charge Q distributed over it. The potential, due to this charge, at the center of curvature if the sector (o) is

197. $\frac{k Q}{R}$
198. $\frac{k Q}{2 R}$
199. $\frac{2 k Q}{R}$
200. $\frac{k Q}{R} \ln 2$
201. A charge ' q ' is uniformly distributed within a spherical volume of radius R. A negative point charge q ' is placed at the center of this sphere so that the electric field of the overall distribution (i.e. q and q ' together) vanishes at the mid-point of the radius of the sphere.

If the potential at the surface of the sphere with ' q alone' is V_{1} and with q, q together is V_{2}, then

1. $\frac{V_{1}}{V_{2}}=\frac{2}{1}$
2. $\frac{V_{1}}{V_{2}}=\frac{4}{3}$
3. $\frac{V_{1}}{V_{2}}=\frac{4}{1}$
4. $\frac{V_{1}}{V_{2}}=\frac{8}{7}$
5. A pair of concentric conducting spherical shells of radii a, b are given charges $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ respectively.

The potential of the outer sphere depends on

1. Q_{2} only
2. $Q_{1}-Q_{2}$
3. $\mathrm{Q}_{1}+\mathrm{Q}_{2}$
4. A pair of concentric conducting spherical shells of radii a, b are given charges Q_{1}, Q_{2} respectively.

The potential difference between the two spheres depends on

1. Q_{2} only
2. $Q_{1}-Q_{2}$
3. $\mathrm{Q}_{1}+\mathrm{Q}_{2}$
4. Q_{1} only
5. Three concentric spherical conducting shells of radii a, b, с $(a<\mathrm{b}<\mathrm{c})$ are placed as shown. Let $C_{a b}$ be the capacitance when a , b spheres are charged with $+\mathrm{Q},-\mathrm{Q}$ and similarly, let C_{bc} be the capacitance between b , c spheres while $C_{a c}$ be the capacitance between a, c sphere. Then:

6. $C_{a b}+C_{b c}=C_{a c}$
7. $\frac{1}{C_{a b}}+\frac{1}{C_{b c}}=\frac{1}{C_{a c}}$
8. $\sqrt{C_{a b} \cdot C_{b c}}=C_{a c}$
9. $C_{a b}-C_{b c}=C_{a c}$
10. Q_{1} only
11. Consider a parallel plate capacitor of plate area 'A', plate separation 'd'. Suppose that the plates are given charges +Q , - Q respectively. The force between the two plates is proportional to

12. $\frac{Q^{2}}{d^{2}}$
13. $\frac{Q^{2}}{A}$
14. $\frac{Q^{2}}{d \sqrt{A}}$
15. $\frac{Q^{2} \sqrt{A}}{d^{3}}$
16. A capacitor is constructed by taking metallic circular discs of radius 'r' placed face-to-face with a separation of ' d '. A dielectric slab is inserted into the space between the plates so that it fills the entire width, but only half the area between the plates. The dielectric constant is K . Then, the capacitance is
17. $\frac{K \varepsilon_{0} \pi r^{2}}{d}$
18. $\frac{K \varepsilon_{0} \pi r^{2}}{2 d}$
19. $\frac{K+1}{2} \frac{\varepsilon_{0} \pi r^{2}}{d}$
20. None of the above
21. An uncharged capacitor (C) is connected to a battery of emf E . Once it is fully charged, it is connected to a second battery of emf 2 E . The positive terminal of the capacitor and battery are connected and their negative terminals are similarly connected together. The energy dissipated as heat, when the second battery is connected is
22. $\frac{3}{2} C E^{2}$
23. $\frac{1}{2} C E^{2}$
24. $C E^{2}$
25. $\frac{5}{2} C E^{2}$
26. Consider a spherical conductor of radius r , centered at the point O . A point charge $\mathrm{q}(\mathrm{q}>0)$ is placed outside the sphere, at a distance ' d ' from its center $(\mathrm{O})(\mathrm{d}>\mathrm{r}$) and the sphere is earthed.

Assertion: The electric flux due to the external charge q and the induced charges on the sphere through the spherical surface S shown dotted in the diagram, is $\left(-\mathrm{q} / \varepsilon_{0}\right.$).

Reason: Negative charges are induced on the surface of the conducting sphere due to the positive charge q in the vicinity, and the potential of the conducting sphere is zero.

1. Both assertion and reason are true, and reason is the correct explanation of the assertion.
2. Both assertion and reason are true, but reason is not the correct explanation of the assertion.
3. Assertion is true but reason is false.
4. Assertion is false but reason is true.
5. All the resistances shown in the network are equal to 1Ω. Find the resistance of the network measured between A and D .

6. 1Ω
7. 2Ω
8. $\frac{1}{2} \Omega$
9. $\frac{1}{4} \Omega$
10. In the circuit shown in the diagram, the resistance ' r ' is unknown but fixed. The EMF 'E' can be varied and the current (i) passing through the ammeter A can be measured in magnitude only.

When the EMF ' E ' is negligible (i.e. practically zero) the ammeter reading will

1. be 5 A , independent of r
2. be 2.5 A , independent of r
3. be less than 5 A , decreasing with r
4. be more than 5 A , increasing with r
5. Find the current through the rightmost 2Ω resistor.

6. 1 A
7. 2 A
8. 0.5 A
9. 0.25 A
10. A battery of emf E is used to charge an uncharged capacitor C, through a resistance R. The time constant of the circuit is $\tau=R C$.
Assertion: When the voltage across the capacitor reaches 50% of its maximum value, the rate of heat dissipation in the resistor falls to $\frac{1}{4}$ of its initial value.
Reason: The voltage across the capacitor is proportional to the charge on its plates, while the rate of flow of charge is the current (i). This current (i) falls exponentially with a time constant T , and it falls to 50% of its initial value when the capacitor is 50% charged. The rate of heat dissipation, being proportional to i^{2}, falls to $\frac{1}{4}$ of its initial value.
11. Both assertion and reason are true, and reason is the correct explanation of the assertion.
12. Both assertion and reason are true, but reason is not the correct explanation of the assertion.
13. Assertion is true but reason is false.
14. Assertion is false but reason is true.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep

course

