Botany - Section A

1. In a terrestrial ecosystem, the abiotic factors that have most effect on its primary productivity will be:
2. light and nutrients
3. light and moisture
4. temperature and moisture
5. temperature and nutrients
6. Which of the following is probably the most economically important plant-parasitic nematode species among the tropical and subtropical regions?
7. Meloidogyne incognita
8. Coenorhabditis elegans
9. Heterodera glycines
10. Arthrobotrys dactyloides
11. Match each item in Column I with one in Column II and select the correct match from the codes given:

COLUMN I
A Standing crop

B Standing state
COLUMN II
Mass of living material at each trophic level at a particular time The amount of nutrients present in the soil at any given time
C Net primary productivity
$\mathrm{D}^{\text {Secondary }}$ productivity

R The rate of formation of new organic matter by consumers
S Available biomass for the consumption to heterotrophs

Codes:
A B C D

1. S P Q R
2. P Q R S
3. P Q S R
4. R P Q S
5. To isolate DNA from a cell, the cell wall needs to be broken. Match the enzymes in Column I with the type of cell in Column II and select the correct match from the codes given:

Column I Column II
A Lysozyme P Fungal cell
B Cellulase Q Plant cell
C Chitinase R Bacterial cell

Codes

A B C

1. P Q R
2. $\mathrm{P} R \mathrm{Q}$
3. R P Q
4. R Q P
5. Ecology can be best described as:
6. the study of living things.
7. the study of non-living things.
8. the study of environmental factors.
9. the study of ecosystems.
10. Calotropis are avoided by the grazing herbivores because they produce:
11. stipules
12. thorns
13. mustard oils
14. cardiac glycosides
15. Eicchornia crassipes, Parthenium hysterophorus and Lantana camara are:
16. native species of India
17. critically endangered plants of India
18. invasive plant species
19. medicinal plants
20. The organisms first to colonize a bare rock, during ecological succession, are:
21. Annual plants
22. Lichens
23. Mycorrhiza
24. Green algae
25. Match plant diseases given in Column I with causative pathogens in Column II and select the correct match from the codes given:

COLUMN I

COLUMN II

A Brown rust of wheat P Colletotrichum falcatum
B Black rot of crucifers Q Xanthomonas campestris
C Red rot of sugarcane R Phytophthora infestans
D Late blight of potato S Puccinia graminis

Codes:

A B C D

1. S Q P R
2. S Q R P
3. S R P Q
4. R Q R S
5. Match the sources of SCP in column I with their class in Column II and select the correct match from the codes given:

COLUMN I

COLUMN II

A Methylophilus methylotropus P Blue green alga
B Fusarium venenatum Q Bacteria
C Spirullina R Fungus

Codes:
A B C

1. Q P R
2. Q R P
3. P R Q
4. R Q P
5. Which of the following is called as the "bee orchid" due to the flowers resembling the furry bodies of bees?
6. Epidendrum secundum
7. Vanilla planifolia
8. Ophrys apifera
9. Dactylorhiza sambucina
10. The World Food Prize is an international award recognizing the achievements of individuals who have advanced human development by improving the quality, quantity or availability of food in the world.
I. The prize was created by Norman Borlaug
II. The first prize was given to M. S. Swaminathan
11. Only I is correct
12. Only II is correct
13. Both I and II are correct
14. Both I and II are incorrect
15. Identify the correct statement:
I. PAR designates the spectral range of solar radiation from 400 to 700 nanometers
II. PAR is less than 50% of the incident solar radiation
III. Plants capture only 2 to 10% of PAR
16. Only I and II
17. Only I and III
18. Only II and III
19. I, II and III
20. In primary hydrarch succession, the seral stage just before the climax forest is likely to be:
21. Submerged free floating plant stage
22. Scrub stage
23. Marsh meadow stage
24. Reed swamp stage
25. Golden rice has been produced by:
26. Cross hybridisation with wild varieties
27. Transforming rice by genetic engineering
28. Mutation breeding
29. Somatic hybridisation
30. Arrange the steps of somatic hybridization in correct chronological order:
I. Protoplast fusion using electric shock (electrofusion) or chemical treatment.
II. The removal of the cell wall of one cell of each type of plant using cellulase enzyme to produce a somatic cell called a protoplast
III. The formation of the cell wall induced using hormones IV. The cells are then grown into calluses which then are further grown to plantlets and finally to a full plant, known as a somatic hybrid.
31. I \rightarrow II \rightarrow III \rightarrow IV
32. $\mathrm{I} \rightarrow \mathrm{II} \rightarrow \mathrm{IV} \rightarrow \mathrm{III}$
33. II \rightarrow I \rightarrow III \rightarrow IV
34. $\mathrm{II} \rightarrow \mathrm{I} \rightarrow \mathrm{IV} \rightarrow \mathrm{III}$
35. Consider the given two statements:
I. Mutation breeding uses the spontaneous mutations.
II. Spontaneous mutations occur at a very high rate in the gene pool of an organism.
36. Both I and II are correct and II explains I
37. Both I and II are correct but II does not explain I
38. I is correct but II is incorrect
39. Both I and II are incorrect
40. Biological nitrogen fixation directly results in the formation of:
41. Ammonium ions
42. Nitrate ions
43. Nitrite ions
44. Ammonia
45. Algal blooms:
I. are the result of a nutrient, like nitrogen or phosphorus from various sources entering the aquatic system and causing excessive growth of algae.
II. lead to increased dissolved oxygen in water body as algae are photosynthetic
46. Only I is correct
47. Only II is correct
48. Both I and II are correct
49. Both I and II are incorrect
50. Identify the correct statements:
I. Kalyan sona and Sonalika are semi-dwarf varieties of wheat.
II. Jaya and Ratna are varieties of rice developed in India.
III. Saccharum barberi had thicker stems and higher sugar content and did not grow well in North India
51. Only II
52. Only I and II
53. Only II and III
54. Only I and III
55. Somaclonal variation is the variation seen in plants that have been produced by:
56. Classical hybridization
57. Mutation breeding
58. Plant tissue culture
59. Genetic engineering
60. Identify the incorrect statement regarding primary productivity in an ecosystem?
61. It occurs only through the process of photosynthesis.
62. Almost all life on Earth relies directly or indirectly on primary production.
63. Net primary production is available for consumption by herbivores.
64. Gross primary productivity minus the respiratory loss is the net primary productivity.
65. Which of the following ecosystems are expected to have the least productivity?
66. Tundras
67. Tropical rain forests
68. Open oceans
69. Swamps and marshes
70. It is possible to obtain virus-free plants from virusinfected plants using the technique of:
71. Embryo rescue
72. Meristem culture
73. Biofortification
74. Phytoremediation
75. During the carbon cycle, carbon dioxide is returned to the atmosphere by the plants through:
76. Photosynthesis
77. Decomposition of biomass
78. Respiration
79. Transpiration
80. Mutation breeding has been used to create:
I. Mung bean variety resistant to yellow mosaic virus
II. Abelmoschus variety resistant to yellow mosaic virus
81. Only I
82. Only II
83. Both I and II
84. Neither I nor II

33. Cuscuta [dodder]:

1. is capable of living in oligotrophic soils by getting nitrogen from insectivory
2. produces haustoria that insert themselves into the vascular system of the host
3. is a typical ephemeral that complete their life cycle over many years
4. is a succulent carrying out CAM photosynthesis
5. Match each item in Column I with one in Column II and select the correct match from the codes given:

Column I
A Eagle

Column II

P tertiary consumer
B Cyanobacterium Q primary producer
C Fungus \quad R decomposer
D Grasshopper S primary consumer

Codes:
A B C D

1. P Q R S
2. Q P S R
3. R S Q P
D. $S R P Q$
4. What would be true if you compare the flow of energy and the flow of chemical nutrients in an ecosystem?
5. Much larger amount of energy flows through the ecosystem than the amount of nutrients
6. Energy is recycled, but nutrients are not
7. The requirement of nutrients is obligatory for organisms but the requirement of energy is not.
8. Nutrients are recycled, but energy is not.
9. Agrobacterium tumefaciens infects the plant through its:
10. Chromosomal DNA
11. Complementary DNA
12. F plasmid
13. Ti plasmid
14. The number of species known and described of algae is more than that of all the following except:
15. Ferns
16. Lichens
17. Mosses
18. Fungi
19. Identify the correct statements:
I. Primary succession is faster than the secondary succession
II. Both hydrarch and xerarch successions lead to mesic conditions
III. Rooted submerged plants are pioneers in primary hydrarch succession
20. Only II
21. Only III
22. Only II and III
23. Only I
24. An epiphyte is a plant that:
I. grows on other plants for physical support
II. affects the host negatively
25. Only I is correct
26. Only II is correct
27. Both I and II are correct
28. Both I and II are incorrect

Botany - Section B

36. Consider the given two statements:
I. Spores and crystalline insecticidal proteins produced by B. thuringiensis are now used as insecticides in organic farming.
II. Because of their specificity, these pesticides are regarded as environmentally friendly, with little or no effect on humans, wildlife, pollinators, and most other beneficial insects.
37. Both I and II are correct and II explains I
38. Both I and II are correct but II does not explain I
39. I is correct but II is incorrect
40. I is incorrect but II is correct
41. If plants convert about 1% of the sunlight they receive into chemical energy, the total energy originally present in the incident sunlight that is finally embodied in a tertiary consumer is about:
42. 0.1%
43. 0.01%
44. 0.001%
45. 0.0001%
46. The trophic level of an organism is the number of steps it is from the start of the food chain. The Level 2 typically will be occupied by:
47. Primary producer
48. Herbivore
49. Carnivore
50. Apex predator
51. Identify the scientist, popularly known as Father of Wheat Revolution, and who was instrumental in developing 'PV 18' in 1966 and the most popular amber grained wheat variety 'Kalyansona' in 1967?
52. Gurdev Khush
53. M. S. Swaminathan
54. Dilbagh Singh Athwal
55. Chidambaram Subramaniam
56. During organogenesis in plant tissue culture:
57. an excess of auxin will often result in a proliferation of roots, while an excess of cytokinin yield shoots
58. an excess of auxin will often result in a proliferation of roots, while an excess of gibberellins yield shoots
59. an excess of cytokinin will often result in a proliferation of roots, while an excess of gibberellins yield shoots
60. an excess of gibberellins will often result in a proliferation of roots, while an excess of ethylene yield shoots
61. India has promised to become carbon neutral and achieve net zero emissions by
62. 2030
63. 2050
64. 2060
65. 2070
66. For their work in the discovery and characterization of restriction enzymes, the 1978 Nobel Prize for Physiology or Medicine was awarded to:
67. Salvador Luria, Jean Weigle and Giuseppe Bertani
68. Nirenberg, Matthaei and Korana
69. Paul Berg, Stanley Cohen and Herbert Boyer
70. Werner Arber, Daniel Nathans, and Hamilton O. Smith
71. Consider the given two statements:
I. Xerophytic plants tend to have less overall surface area than other plants.
II. Less area that is exposed to the air reduces water loss by transpiration and evaporation.
72. Both I and II are correct and II explains I
73. Both I and II are correct but II does not explain I
74. I is correct but II is incorrect.
75. Both I and II are incorrect.
76. In 1995, the European Patent Office wrongly granted a patent on an anti-fungal product derived from Azadirachta indica to the US Department of Agriculture and W. R. Grace and Company. The common name of this plant in India is:
77. Haldi
78. Neem
79. Basmati
80. Arjun
81. Flavr Savr, a GM tomato, has been developed for:
82. Insect resistance
83. Increased shelf life
84. Herbicide resistance
85. Increased vitamin A content
86. Plant tissue culture may offer certain advantages over traditional methods of propagation, including all the following except:
87. The production of plants that exhibit large variations from the parent plants.
88. Quickly production of mature plants.
89. The regeneration of whole plants from plant cells that have been genetically modified.
90. Storage of genetic plant material to safeguard native plant species.
91. The biggest advantage of growing Bt cotton instead of non-Bt varieties is:
92. reductions in pesticides to be sprayed on a crop and the ecological benefits which stem from that.
93. increased yield of cotton due to effective control of three types of bollworms
94. Reduction in predators which help in controlling the bollworms by feeding on larvae and eggs of bollworm
95. Potential reduction in the cost of cultivation
96. According to the 'India State of Forest Report (ISFR)' 2021, which state has the largest area-wise forest cover in the country?
97. Arunachal Pradesh
98. Chhattisgarh
99. Madhya Pradesh
100. Maharashtra
101. Quality protein maize (QPM) is a family of maize varieties. QPM grain contains nearly twice as much amino acids that are limiting amino acids in grains. These amino acids are:
102. Lysine and tryptophan
103. Methionine and cysteine
104. Glutamic acid and aspartic acid
105. Threonine and tyrosine
106. The most commonly used biological pesticide worldwide is:
107. Agrobacterium tumefaciens
108. Pseudomonas putida
109. Bacillus thuringiensis
110. Trichoderma harzianum

Zoology - Section A

51. Beginning with a single template DNA, a PCR reaction is allowed to continue for 30 cycles. The number of copies of the template DNA at the end is expected to be about:
52. 256
53. 256,000
54. 1 million
55. 1 billion
56. Identify the correct statements:
I. Chipko movement aimed at protecting trees and forests.
II. Joint Forest Management originated in West Bengal in 1980's in India.
III. The Amrita Devi Bishnoi Wildlife Protection Award is a national award instituted by the government of India for wildlife conservation.
57. Only I and II
58. Only I and III
59. Only II and III
60. I, II and III
61. Why is a nucleic acid probe required in many genetic engineering experiments?
62. To clone genes
63. To produce a large amount of DNA from a tiny amount of DNA
64. To make DNA on the template of RNA
65. To identify genes that have been separated by electrophoresis, or mRNA molecules through in-situ hybridization
66. The population of Ukraine today is most likely to be affected by:
67. Natality
68. Mortality
69. Immigration
70. Emigration
71. Three Mile Island and Chernobyl are located respectively in:
72. USA and Russia
73. Russia and Canada
74. USA and Ukraine
75. England and Uzbekistan
76. Consider the two statements:
I. Inbreeding is necessary if we want to evolve a pureline in any animal.
II. Continued inbreeding often results in reduced fertility and productivity.
77. Both I and II are correct and II explains I
78. Both I and II are correct but II does not explain I
79. I is correct but II is incorrect
80. Both I and II are incorrect
81. Given below are two population pyramids, both of India, one for year 2000 and another for year 2020:

82. Pyramid A is of 2020 as it has a broader base
83. Pyramid B is of 2000 as it has more females in the younger age groups
84. Pyramid B is of 2020 as it has more females in the younger age groups
85. Pyramid A is of 2000 as it has a broader base
86. Which of the following tools of recombinant DNA technology is incorrectly paired with its use?

1.	DNA ligase	cutting DNA, creating sticky ends of restriction fragments
2.	DNA polymerase	polymerase chain reaction to amplify sections of DNA
3.	Electrophoresis	separation of DNA fragments
4.	Reverse transcriptase	production of cDNA from mRNA

59. Predators:

1. act as conduits for energy transfer across trophic levels
2. do not include herbivores in broad ecological context
3. indiscriminately kill their prey
4. have a very high biotic potential
5. Consider the given statements:
I. Eutrophication is the natural aging of a lake by nutrient enrichment of its water.
II. Cultural Eutrophication is in effort by the Ministry of Culture to save lakes and ponds from eutrophication.
6. Only I is correct
7. Only II is correct
8. Both I and II are correct
9. Both I and II are incorrect
10. The controlled cultivation of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants is known as:
11. Fisheries
12. Aquaculture
13. Pisciculture
14. Commercial fishing
15. Amongst the following which gas is the least contributor to total global warming?
16. Methane
17. Carbon dioxide
18. Chlorofluorocarbons
19. Nitrous oxide
20. Identify the incorrectly matched pair:

1.	Connell	Competitive release
2.	Gauss	Competitive exclusion principle
3.	MacArthur	Resource partitioning
4.	Tillman	Rivet popper hypothesis

64. Identify the incorrect statement:
65. Mercury and DDT undergo biomagnifications in the terrestrial food chain.
66. Nitrates and phosphates can cause rapid enrichment of nutrients in a lake.
67. Recycling is the only solution for the treatment of Ewaste.
68. Without greenhouse effect the average temperature at surface of earth would have been minus $18^{0} \mathrm{C}$
69. Kangaroo rat:
I. has a marsupium to nurse the young ones
II. obtain enough water from the metabolic oxidation of the seeds they eat to survive and do not need to drink water at all
70. Only I is correct
71. Only II is correct
72. Both I and II are correct
73. Both I and II are incorrect
74. PCR does not require:
75. A thermostable DNA polymerase
76. Dideoxy-dNTPs (ddNTPs)
77. Template DNA
78. Primers
79. Consider the given statements:
I. Temperature is the most important ecologically relevant environmental factor.
II. Animals living in aquatic environment do not face any water related problems.
III. Photoperiod has no effect on animal reproduction.
80. Only II and III are correct
81. Only I is correct
82. Only I and III are correct
83. Only III is correct
84. Identify the incorrect statement:
85. Thylacine is an extinct carnivorous marsupial that was native to the Australian mainland.
86. The mass extinction currently in progress is the fifth mass extinction.
87. Habitat loss and fragmentation is the most important cause driving animals and plants to extinction.
88. The Nile perch introduced into Lake Victoria became invasive.
89. The predominant honeybee found and most commonly domesticated in India is:
90. Apis cerana indica
91. Apis mellifera
92. Apis dorsata
93. Apis florea
94. The first licensed drug generated using recombinant DNA technology was:
95. Human growth hormone
96. Human insulin
97. Tissue plasminogen activator
98. Factor VIII
99. The source of the reverse transcriptase used in recombinant DNA technology, is a:
100. retrovirus
101. plant cell
102. cultured fungal cell
103. cultured phage-infected mammalian cell
104. Match each item in column I with one in column II and select the correct match from the codes given:

	Column I		Column II
A	Hibernation	P	Bears in winter months
B	Aestivation	Q	Air breathing land snails
C	Diapause	R	Zooplankton in lakes and ponds

Codes:

	A	B	C
1.	P	Q	R
2.	Q	P	R
3.	P	R	Q
4.	R	Q	P

73. The First Tiger Reserve of India is in:
74. Kerala
75. Madhya Pradesh
76. Assam
77. Uttarakhand
78. What is incorrect regarding Multiple Ovulation Embryo Transfer technology used in cattle breeding?
79. Hormone with FSH like activity is used to induce super ovulation
80. The cow is mated with an elite bull or artificially inseminated
81. Fertilized eggs are recovered surgically at $4-8$ cell stage
82. The proembryos are transferred to surrogate mothers
83. Influenza A virus subtype H5N1 causes:
84. Swine flu
85. Dengue
86. Covid-19
87. Avian influenza
88. Out-crossing:
I. is the best breeding method for animals that are below average in productivity in milk production, growth rate and beef cattle.
II. helps to overcome inbreeding depression
89. Only I is correct
90. Only II is correct
91. Both I and II are correct
92. Both I and II are incorrect
93. El Nino:
94. is a climate pattern that describes the unusual warming of surface waters in the eastern Pacific Ocean.
95. is a climate pattern that describes the unusual cooling of surface waters in the eastern Pacific Ocean.
96. is a climate pattern that describes the unusual heavy monsoon rains in the Indian subcontinent in winters.
97. is a climate pattern that describes the unusual warming of the Arctic causing large scale meltdown of ice.
98. If the core body temperature of a human body goes below 370C, the feedback mechanism elicited to bring the temperature back to normal will include:
99. Vasoconstriction and sweating
100. Vasodilation and sweating
101. Vasoconstriction and shivering
102. Vasodilation and shivering
103. VNTRs are a type of:
104. Microsatellites
105. Ministaellites
106. SNPs
107. Secondary constrictions
108. The mean annual precipitation is most variable in:
109. Tropical forest
110. Desert
111. Grassland
112. Arctic tundra
113. Very small animals are rarely found in polar regions mainly because:
114. there is abundance of large predators in the polar regions
115. very small animals are generally herbivores and grasses do not grow in polar regions
116. the water is found only beneath the frozen ice in polar regions
117. they have a larger surface area relative to their volume

84. Montreal protocol:

1. is an international treaty designed to protect the ozone layer signed in 1987, and entered into force in 1989.
2. is an international treaty designed to control global warming signed in 1991, and entered into force in 1993.
3. is an international treaty designed to protect the ecological hotspots of biodiversity signed in 1987, and entered into force in 1989.
4. is an international treaty designed to protect wetlands signed in 1985, and entered into force in 1987.
5. The dideoxyribonucleotide chain-termination method:
6. is used to produce recombinant proteins in a heterologous host
7. was developed by Fred Sanger and used in human genome sequencing
8. is an improved version of PCR for DNA multiplication
9. is used to ensure gene expression in a heterologous
host

Zoology - Section B

86. Consider the two statements:
I. Haemoglobin in humans adapted to very high altitudes has a lower binding affinity for oxygen than that found in humans living at the sea level.
II. Lower affinity of haemoglobin to oxygen means more oxygen can bind to haemoglobin even at low partial pressures
87. Both I and II are correct and II explains I
88. Both I and II are correct but II does not explain I
89. I is correct but II is incorrect
90. Both I and II are incorrect
91. Consider the given two statements:
I. It is beneficial to have a multiple cloning site (MCS) within the lac Z gene.
II. When foreign DNA interrupts the lac Z gene, no bgalactosidase can be formed, and X-Gal remains colourless which allows the researcher to distinguish between recombinant and unrecombinant vectors.
92. Both I and II are correct and II explains I
93. Both I and II are correct but II does not explain I
94. I is correct but II is incorrect
95. Both I and II are incorrect
96. Consider the two statements:
I. Mules are mostly infertile.
II. Mule is the hybrid of a male donkey and a female horse.
97. Both I and II are correct and II explains I
98. Both I and Ii are correct but II does not explain I
99. I is correct but Ii is incorrect
100. Both I and Ii are incorrect
101. Semelparity is a reproductive strategy also known as "big bang" reproduction. This is because the single reproductive event of semelparous organisms is usually large as well as fatal. A classical example is seen in:
102. Most perennial plants
103. Mollusks
104. Pacific salmon
105. Humans
106. Bacterial cells synthesize restriction endonucleases because restriction endonucleases help the bacterial cells:
107. grow readily in medium containing antibodies.
108. protect themselves from viral infection.
109. open up the DNA in their chromosomes so that transcription is easier.
110. take up foreign DNA from their environment and combine it into their genome.
111. Consider the two statements:
I. Agar Gel electrophoresis is useful in analysis of DNA.
II. DNA is generally positively charged due to its nitrogenous bases so an electrical field forces it to move toward a negative pole.
112. Both I and II are correct and II explains I
113. Both I and II are correct but II does not explain I
114. I is correct but II is incorrect
115. Both I and II are incorrect
116. A form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species directed at a predator of them both is called as:
117. Mullerian mimicry
118. Batesian mimicry
119. Aposematism
120. Camouflage
121. Consider the following two statements:
I. Plasmid can be used as a vector in recombinant DNA technology experiments.
II. Plasmid is an extrachromosomal, circular, double stranded DNA found in some bacteria.
122. Both I and II are correct and II explains I
123. Both I and II are correct but II does not explain I
124. I is correct but II is incorrect
125. Both I and II are incorrect
126. The relationship between Nitrosomonas and Nitrobacter can be best described as:
127. Mutualism
128. Commensalism
129. Competition
130. Amensalism
131. Consider the two given statements:
I. The life cycles of endoparasites are more complex than that of the ectoparasites.
II. The morphological and anatomical features of endoparasites are greatly simplified.
132. Both I and II are correct and II explains I
133. Both I and II are correct but II does not explain I
134. I is correct but II is incorrect
135. Both I and II are incorrect
136. Consider the two statements:
I. Transcripts of eukaryotic genes cannot be translated by bacteria.
II. Eukaryotic genes contain introns.
137. Both I and II are correct and II explains I
138. Both I and II are correct but II does not explain I
139. I is correct but II is incorrect
140. Both I and II are incorrect
141. Consider the two statements:
I. Diseases such as sickle cell disease that are caused by autosomal recessive disorders may be a good candidate for gene therapy treatment.
II. For such disorders, a person's normal phenotype or cell function may be restored in cells that have the disease by a normal copy of the gene that is mutated.
142. Both I and II are correct and II explains I
143. Both I and II are correct but II does not explain I
144. I is correct but II is incorrect
145. Both I and II are incorrect
146. Fishes living in freshwater:
147. drink lot of water, pass lot of urine and constantly lose salt to the outside
148. do not drink water, pass lot of urine and constantly pick salt actively from the outside
149. do not drink water, pass highly concentrated urine and constantly pick salt actively from the outside
150. drink water, pass highly concentrated urine and constantly lose salt actively to the outside
151. Bakhira Wildlife Sanctuary, a new Ramsar site is located in:
152. Uttar Pradesh
153. Gujarat
154. Madhya Pradesh
155. Rajasthan
156. Which of the following would be a correct representation of median age in Indian population?
157. 10 years
158. 28 years
159. 55 years
160. 72 years

Chemistry - Section A

101. Compound, among the following that can donate hydride fastest is -

102.
103.

102. Pyroligneous acid does not contain

1. Acetic acid
2. Ethanol
3. Methanol
4. Acetone
5. The Hell Volhard Zelinsky (HVZ) reaction is not 107. given by
6. Acetic acid
7. 2,2-dimethyl propanoic acid
8. 2-Methyl propanoic acid
9. 2,3-dimethyl butanoic acid

10.

The compound ' B ' is

1. Crotonaldehyde
2. Acrolein
3. Mesityl oxide
4. Propanal
5.

$\mathrm{R}-\mathrm{N} \equiv \mathrm{C}:+\mathrm{E}-\mathrm{Nu} \longrightarrow \mathrm{A}$,
the compound ' A ' is

A is
1.

2.

4. Both (1) and (2)
108. The compound which would respond to Tollen's reagent is

1. $\mathrm{CH}_{3} \mathrm{CHO}$
2.

3. HCOOH
4. All of these
109. In the Carbylamine reaction, the intermediate formed
4. is

106. The least basic compound amongst the following is:

1. Pyrrole
2. Pyridine
3.

1.
\oplus
2. CCl_{3}
3. CCl_{2}
$\stackrel{\ominus}{\mathrm{C}} \mathrm{Cl}_{3}$
3. Aniline
4. Benzyl amine

110. Case study

Aldol Condensation
When two carbonyl compounds having α-hydrogen atoms are condensed in presence of dilute alkali to form a compound that has the properties of alcohol as well as carbonyl compound, the compound is known as ALDOL. Aldol is unstable and on heating, it eliminates one $\mathrm{H}_{2} \mathrm{O}$ molecule and is converted into $\alpha, \beta-$ unsaturated aldehyde or ketone

Which of the following compounds is readily dehydrated on heating?

4. All are equally dehydrated
111. When phenol is reacted with CCl_{4} and NaOH , salicylic acid is formed. In this reaction, the intermediate formed is-

1. : CCl_{2}
2.

3.

$\stackrel{\ominus}{\mathrm{C}} \mathrm{Cl}_{3}$

4. No intermediate is formed

112. Case study

Aldol Condensation
When two carbonyl compounds having α-hydrogen atoms are condensed in presence of dilute alkali to form a compound that has the properties of alcohol as well as carbonyl compound, the compound is known as ALDOL. Aldol is unstable and on heating, it eliminates one $\mathrm{H}_{2} \mathrm{O}$ molecule and is converted into $\alpha, \beta-$ unsaturated aldehyde or ketone

Compound ' A ' is

113.
 compound ' A ' is

1.

4.

114. In Cannizarro's reaction, we use $50 \% \mathrm{NaOH}$ or KOH instead of dilute NaOH or KOH . The reason for using the $50 \% \mathrm{NaOH}$ or KOH in Cannizarro's reaction is

1. To convert monoanion to dianion
2. To prevent the abstraction of hydrogen atom which is attached with carbonyl carbon
3. To enhance the release of H^{+}ion
4. None of the above
5. The reason behind formation of isocyanide in the reaction between alkyl halide and AgCN , is-
6. AgCN is an electrovalent compound
7. AgCN is a covalent compound
8. In -CN, lone pair of $\mathrm{e}^{-} \mathrm{s}$ is present on carbon only
9. None of the above
10. When alcohol is reacted with SOCl_{2} in presence of pyridine then alkyl chloride is formed. The reaction follows the mechanism
11. $\mathrm{S}_{\mathrm{N}} 1$
12. $\mathrm{S}_{\mathrm{N}} 2$
13. $\mathrm{S}_{\mathrm{N}} \mathrm{i}$
14. $\mathrm{S}_{\mathrm{N}} \mathrm{i}+\mathrm{S}_{\mathrm{N}} 2$
15. Victor Meyer's test is used to distinguish
16. $1^{\circ}, 2^{\circ}$, and 3° alcohols
17. $1^{\circ}, 2^{\circ}$, and 3° Alkyl halides
18. $1^{\circ}, 2^{\circ}$, and 3° Nitro compounds
19. All of the above
20. When a mixture of calcium formate and calcium acetate is dry distillated, possible carbonyl compound formed is
21. Formaldehyde
22. Acetaldehyde
23. Acetone
24. All of these
25.

The compound ' C ' is

2.

4.
120. When ethyl formate is reacted with excess of $\mathrm{C}_{2} \mathrm{H}_{5}$ MgBr followed by hydrolysis, the final product formed is

1. Pentan-2-ol
2. 2-Methyl butan-2-ol
3. Pentan-3-ol
4. 2-Methyl butan-l-ol
5. Nascent chlorine, in the reaction of bleaching powder with ethanol, acts as -
6. Oxidising agent
7. Chlorinating agent
8. Both (1) and (2)
9. Reducing agent
10. The correct order of reactivity, amongst the given arrangements, towards nucleophilic addition, is
11. $\mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
12. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}>\mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3}$
13. $\mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3}$
14. $\mathrm{HCHO}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3}$
15. The most reactive haloarene towards aromatic 127. nucleophilic substitution is

16.

3.
124. Which alcohol is most reactive in esterification reaction?

1. $\mathrm{CH}_{3} \mathrm{OH}$
2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
3.

4. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$
125. Sorbitol ($\mathrm{HOH}_{2} \mathrm{C}\left(\mathrm{CHOH} 子_{4} \mathrm{CH}_{2} \mathrm{OH}\right)$ has 4 asymmetric carbon atoms. The number of optically active and optically inactive isomers, respectively, are

1. 12 \& 4
2. 16 \& 0
3. $10 \& 2$
4. 8 \& 2
5. The correct order of the acidity of nitrophenols is
6. o-> m-> p-
7. o-> p->m-
8. $\mathrm{p}->\mathrm{m}->\mathrm{o}-$
9. $\mathrm{p}->\mathrm{o}->\mathrm{m}-$

The compound ' A ' is

1.

3.

14
128. In the first step, in esterification reaction, H^{+}attacks on

1. Oxygen atom of an alcohol
2. Doubly bonded oxygen of carboxylic acid
3. Singly bonded oxygen of carboxylic acid
4. Any oxygen atom
5.

is
1.

3.

4.

2.

130. The most acidic compound is

1. CHF_{3}
2. CHCl_{3}
3. CHBr_{3}
4. CHI_{3}
5. When Grignard reagent reacts with HCN or RCN followed by hydrolysis, carbonyl compound is formed. The carbonyl compound which cannot be formed in the above reaction is -
6. HCHO
7. $\mathrm{CH}_{3} \mathrm{CHO}$
8. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
9. All carbonyl compound can formed
10. Case study

Aldol Condensation
When two carbonyl compounds having α-hydrogen atoms are condensed in presence of dilute alkali to form a compound that has the properties of alcohol as well as carbonyl compound, the compound is known as ALDOL. Aldol is unstable and on heating, it eliminates one $\mathrm{H}_{2} \mathrm{O}$ molecule and is converted into $\alpha, \beta-$ unsaturated aldehyde or ketone

Compound ' B ' is
1.

2.

3.

4. None of the above
133. When glycerol is reacted with an excess of HI , the final product formed is

1. Allyl iodide
2. 2-iodopropane
3. Propene
4. 1,2,3 - tri-iodopropane
5. A carbonyl compound reacts with HCN followed by hydrolysis to give lactic acid. The carbonyl compound is
6. HCHO
7. $\mathrm{CH}_{3} \mathrm{CHO}$
8. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
9. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
10. When phenol is reacted with concentrated HNO_{3} and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}, 2,4,6$-trinitrophenol is formed. The correct statement from the following with respect to this reaction is
11. Firstly we added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and then we added concentrated HNO_{3}
12. Firstly we added concentrated HNO_{3} and then we added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
13. Both concentrated HNO_{3} and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ are added together
14. Here, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as dehydrating agent

Chemistry - Section B

136. The correct representation PMMA(Polymethylmethacrylate) is -
137.

of

Compound ' A ' is

1.

137. Which polymer is formed by cationic as well as anionic polymerisation?

1. Teflon
2. Polystyrene
3. Poly Vinyl chloride (PVC)
4. Orlon
5. Which solution acts as an antiseptic and not as a disinfectant?
6. 0.2 to 0.4 ppm chlorine in aqueous solution
7. $2-3 \% \mathrm{I}_{2}$ solution in alcohol and water
8. 1% solution of phenol
9. Sulphur dioxide in very low concentration
10. 1 .
11.

4.

140. The narrow-spectrum antibiotic amongst the following is

1. Chloramphenicol
2. Penicillin G
3. Vancomycin
4. Ofloxacin
5. Lactose is a disaccharide. It is composed of
6. $\alpha-D$-Glucose and $\beta-D-$ Galactose
7. $\beta-D$-Glucose and $\beta-D$-Galactose
8. $\beta-D-$ Glucose and $\alpha-D-$ Galactose
9. $\alpha-D-$ Glucose and $\alpha-D-$ Galactose
10. Oil of wintergreen is obtained by the reaction of
11. Salicyclic acid and $\mathrm{CH}_{3} \mathrm{COCl}$
12. Salicylic acid and $\mathrm{CH}_{3} \mathrm{OH}$
13. Salicylic acid and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
14. Phenol and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
15. Which reagent is used to distinguish glucose and fructose?
16. Fehling's solution
17. Tollen's reagent
18. Br_{2} water
19. All of the above
20. When $\beta-D$-Glucose is dissolved in water then its specific rotation
21. Increases
22. Decreases
23. Remains unchanged
24. First increases and then decreases
25. The monomer unit of Nylon-6 is caprolactam. Caprolactam is formed from the reaction of
26. Cyclohexanone and Hydroxylamine
27. Cyclohexanone and Hydrazine
28. Cyclopentanone and Hydroxylamine
29. Cyclopentanone and Hydrazine
30. The $\mathrm{C}-2$ and $\mathrm{C}-4$ anomer of $\alpha-D$-Glucose, respectively are
31. Lactose and Mannose
32. Galactose and Fructose
33. Mannose and Galactose
34. Galactose and Mannose
35. How many phenyl hydrazine molecules are used for the conversion of one molecule of glucose into glucosazone?
36. 1
37. 2
38. 3
39. 4
40. Which artificial sweetener has the highest sweetness value in comparison to cane sugar?
41. Aspartame
42. Saccharin
43. Sucralose
44. Alitame
45. The correct order of the strength of intermolecular forces of attraction is
46. Thermoplastic $>$ Fibres $>$ Elastomers
47. Elastomers $>$ Fibres $>$ Thermoplastic
48. Fibres $>$ Thermoplastic $>$ Elastomers
49. Fibres $>$ Elastomers $>$ Thermoplastics
50. Coupling reaction is an example of
51. Nucleophilic substitution reaction
52. Electrophilic substitution reaction
53. Elimination reaction
54. Free radical substitution reaction

Physics - Section A

151. A ray of light passes through three parallel media, with the angles of incidence and emergence as shown in the figure. The refractive indices of the media are $\mu_{1}=1$, μ_{2} and μ_{3}. Then:

152. $\mu_{2}=\frac{1}{3}, \mu_{3}=\frac{1}{2}$
153. $\mu_{2}=3, \mu_{3}=\frac{3}{2}$
154. $\mu_{2}=\frac{1}{3}, \mu_{3}=\frac{2}{3}$
155. $\mu_{2}=3, \mu_{3}=2$
156. A ray of light is incident normally onto the surface

AB of a right-angled prism $\mathrm{ABC}\left(\angle \mathrm{B}=90^{\circ}\right)$ and emerges from the surface AC. The refractive index of the material of the prism is $\mu=\sqrt{2}$.

The ray undergoes a deviation of

1. 15^{o}
2. 30°
3. 45°
4. 60°
5. The frequency of light in a photoelectric experiment is tripled. The stopping potential will
6. be tripled.
7. be more than tripled.
8. be less than tripled.
9. become one third.
10. In Young's double-slit experiment conducted with light of an unknown wavelength, it is found that the fringe width is twice the separation between the slits, d , which is 0.5 mm . The slit to screen distance is 1 m . The wavelength of light used is:
11. 125 nm
12. 250 nm
13. 500 nm
14. 1000 nm
15. The sun has a diameter of $1.4 \times 10^{6} \mathrm{~km}$ and is at a distance of $150 \times 10^{6} \mathrm{~km}$ from the earth. An image of the sun is formed by a convex lens of focal length 30 cm . The diameter of the image is:
16. 2.8 cm
17. 2.8 mm
18. 1.4 mm
19. 0.7 mm
20. The shortest wavelength of X -rays produced by a Coolidge tube is 50 pm . The voltage applied to the tube is nearly:
(Take hc $=1240 \mathrm{eV}-\mathrm{nm}$)
21. 12.4 kV
22. 25 kV
23. 50 kV
24. 20 kV
25. A hydrogen atom in the ground state absorbs an ultraviolet photon of wavelength 25 nm . Ignore any momentum associated with the photon. The ejected electron has an energy of nearly:
(Take hc = $1240 \mathrm{eV}-\mathrm{nm}$)
26. 10 eV
27. 25 eV
28. 35 eV
29. 50 eV
30. A hydrogen atom collides with another similar atom at rest. The minimum energy of the first atom so that one of them may get ionised is:
31. 13.6 eV
32. $\frac{13.6}{2} \mathrm{eV}$
33. $2 \times 13.6 \mathrm{eV}$
34. 10.2 eV
35. AB, BC are a pair of mirrors inclined so that the angle between their planes is 60°, as shown in the figure. A ray of light XY is incident on AB and emerges as the ray ZW after two reflections. If the incident ray is rotated so that $\angle A Y X$ decreases by 15°, then $\angle W Z C$

36. increases by 15°.
37. increases by 30°.
38. decreases by 15°.
39. decreases by 30°.
40. A double-slit experiment is performed with one slit four times as wide as the other. The ratio of the maximum and minimum intensities on the screen, $\frac{I_{\max }}{I_{\min }}=$
41. $\frac{5}{3}$
42. $\frac{3}{1}$
43. $\frac{25}{9}$
44. $\frac{9}{1}$
45. A beam of light of power P is normally incident on a flat surface which reflects 50% and absorbs the rest. The force exerted by the beam on the surface is (c is the speed of light in vacuum):
46. zero
47. P/c
48. $0.5 \mathrm{P} / \mathrm{c}$
49. $1.5 \mathrm{P} / \mathrm{c}$
50. A diverging lens (focal length of magnitude f_{1}) and a converging lens (focal length f_{2}) are placed with a common principal axis. The separation between the lenses is D. A thin parallel beam of width d enters from the left and emerges as a parallel beam of width d^{\prime}.

Then,

1. $\mathrm{D}=\mathrm{f}_{1}+\mathrm{f}_{2}$, and $\mathrm{d}^{\prime}=\mathrm{d}$
2. $\mathrm{D}=\mathrm{f}_{1}-\mathrm{f}_{2}$, and $\mathrm{d}^{\prime}<\mathrm{d}$
3. $D=f_{2}-f_{1}$, and $d^{\prime}>d$
4. $\mathrm{D}=\mathrm{f}_{1}+\mathrm{f}_{2}$, and $\mathrm{d}^{\prime}>\mathrm{d}$
5. A ray of light is incident normally onto the surface

AB of a right-angled prism $\mathrm{ABC}\left(\angle \mathrm{B}=90^{\circ}\right)$ and emerges from the surface AC. The refractive index of the material of the prism is $\mu=\sqrt{2}$.

At what other angle of incidence on the surface $A B$ will the ray undergo the same total deviation as before?

1. 15°
2. 30^{0}
3. 45°
4. 60°
5. The electric field associated with a light beam incident on a metallic surface with work-function 3.0 eV , is given by $\quad E=E_{o} \sin \left(\pi \times 10^{7} m^{-1}\right)(x-c t)$.
The stopping potential for the emitted photoelectrons is: (Take hc $=1240 \mathrm{eV}-\mathrm{nm}$, if required)
6. 0.1 V
7. 3.2 V
8. 9.4 V
9. None of the above
10. A convex lens forms a real image of the same size as that of the object, but when it is moved closer by 15 cm it forms a real image that is twice as large. The focal length of the lens is:
11. 15 cm
12. 30 cm
13. 45 cm
14. 90 cm
15. Find the minimum order of a green fringe ($\lambda=500 \mathrm{~nm}$) which overlaps a dark fringe of violet $(\lambda=400 \mathrm{~nm})$ in a Young's double-slit experiment conducted with these two colours.
16. 4
17. 2
18. 5
19. 2.5
20. Let n_{h}, n_{e} be the number of holes and electrons in a sample of silicon (Si) doped with phosphorous (P). Then,
21. $n_{h}=n_{e}$
22. $n_{h}>n_{e}$
23. $n_{e}>n_{h}$
24. any of the above may be true depending on the temperature of the sample.
25.

A lens is placed as shown in the figure, with the x-axis along the principal axis and the origin at the optical centre. A ray of light incident on the lens at $\mathrm{P}(0, \mathrm{y})$ undergoes a deviation δ. A graph of δ vs y is shown:

The focal length of the lens is nearly:

1. 2 cm
2. 20 cm
3. 115 cm
4. 230 cm
5. The inputs A and B can be set to +5 V (representing logic 1) or 0 V (representing logic 0). Then, the circuit in the figure below represents:

6. OR - Gate
7. AND - Gate
8. NOR - Gate
9. NAND - Gate
10. A thin equi-convex lens of refractive index 1.2 is dipped in oil of index 1.44. The lens has a power of 2 D (in air). When it is immersed in the oil, the focal length of the lens becomes:
1.50 cm
11. -50 cm
12. $-50 / 1.2 \mathrm{~cm}$
13. $-50 \times 1.2 \mathrm{~cm}$
14. Photons of frequency ν fill a room. A metallic plate having a work function $\mathrm{W}(<\mathrm{h} \nu)$ is moved with a velocity v, in this room. The maximum energy of the emitted photoelectrons (in the plate's frame)
15. does not depend on v
16. increases as v increases
17. decreases as v increases
18. first increases and then decreases as v is increased
19. The half-life of radioactive iodine, I^{131} is 8 days. A sample of iodine has an activity of $40 \mu \mathrm{Ci}$. What will be its activity after 4 days?
20. $20 \mu C i$
21. $20 \sqrt{2} \mu C i$
22. $32 \mu C i$
23. $10 \mu C i$
24. Two parallel mirrors $\mathrm{M}_{1}, \mathrm{M}_{2}$ are placed facing each other on opposite sides of a room. The separation of the mirrors, as shown in the figure below, is 4 m . A point object P is placed at a distance of 1 m from M_{1}. The separation between the images formed after a single reflection is:

25. 2 m
26. 6 m
27. 8 m
28. 4 m
29. Photons of energy h ν ($\nu=$ frequency) incident onto a photocathode cause the emission of photoelectrons, and a current flows in the circuit. Assume the photoelectrons are emitted normal to the photocathode. A uniform magnetic field B is switched on parallel to the plates (into the plane). The work function is W and the separation between the cathode and anode is ' d '. The minimum value of B for which the ammeter shows zero current satisfies:

30. Bed $=(h \nu-W)$.
31. $(\text { Bed })^{2}=\mathrm{m}(\mathrm{h} \nu+\mathrm{W})$.
32. $(\mathrm{Bed})^{2}=2 \mathrm{~m}(\mathrm{~h} \nu-\mathrm{W})$.
33. $(\mathrm{Bed})^{2}=2 \mathrm{~m}(\mathrm{~h} \nu+\mathrm{W})$.
34. A fraction f of the incident energy in a beam of light of wavelength λ is absorbed by a metallic surface and causes photoemission. If the power of the beam falling on the surface is P, then the maximum photocurrent is $(e$ is electronic charge, h is Planck's Constant, c is the velocity of light in vaccum):
35. $\frac{\lambda P}{h c} f$
36. $\frac{2 \lambda P}{h c} f$
37. $\frac{\lambda P}{h c} f e$
38. $\frac{2 \lambda P}{h c} f e$
39. Atomic number increases in
40. α - decay.
41. $\beta^{-}-$decay.
42. $\beta^{+}-$decay.
43. K - electron capture.
44. Photons of wavelength λ cause the emission of photoelectrons from a metallic surface, the de-Broglie wavelength of the fastest photoelectron being λ_{d}. A graph of $\frac{1}{\lambda}$ vs $\frac{1}{\lambda_{d}}$ is
45. a straight line passing through the origin.
46. a circle.
47. an ellipse.
48. a parabola.
49. Among the given options which is the minimum work function so that light from the Balmer series will not be able to cause any photo-electric effect?
50. 13.6 eV
51. $\frac{13.6}{2} \mathrm{eV}$
52. $13.6 \times\left(\frac{3}{4}\right) \mathrm{eV}$
53. $13.6 \times\left(\frac{1}{4}-\frac{1}{9}\right) \mathrm{eV}$
54. The following diagram shows light travelling from A to B after bouncing off a plane mirror at P . The time taken is $t_{\text {APB }}$. If, however, light were to take a different path, AQB (shown by the dotted line), the time taken is $t_{A Q B}$. Then,

55. $\mathrm{t}_{\mathrm{APB}}=\mathrm{t}_{\mathrm{AQB}}$
56. $\mathrm{t}_{\mathrm{APB}}<\mathrm{t}_{\mathrm{AQB}}$
57. $\mathrm{t}_{\mathrm{APB}}>\mathrm{t}_{\mathrm{AQB}}$
58. $\mathrm{t}_{\mathrm{APB}}$ maybe greater than or less than $\mathrm{t}_{\mathrm{AQB}}$ depending on whether Q is to the left or right of P.
59. Radiation from hydrogen atom making transitions from state $\mathrm{n}=2$ to $\mathrm{n}=1$, falls on a gas containing Li^{2+} ions in $\mathrm{n}=1,2,3$ states. Which of the following statements is correct?
60. Some radiation is absorbed by Li^{2+} ions in $\mathrm{n}=2$ state.
61. Some radiation is absorbed by Li^{2+} ions in $\mathrm{n}=3$ state.
62. Some radiations is absorbed by Li^{2+} ions in $\mathrm{n}=1$ state.
63. None of the radiation is absorbed by Li^{2+} ions.

181. Assertion (A) :

Parallel rays of light of different colors fail to converge to a point after reflection from a spherical mirror.

Reason (R) :

The refractive index of any material depends on the frequency of light.

1. The (A) is true but the (R) is false.
2. The (A) is false but the (R) is true.
3. Both the (A) and the (R) are true and the (R) is a correct explanation of the (A).
4. Both the (A) and (R) are true but the (R) is not a correct explanation of the (A).
5. White light is used to illuminate the double slit, in Young's double-slit experiment. Then, which of the following is/are true?
(I) The central fringe will be white.
(II) Closest to the central fringe will be a violet fringe.
(III) There will not be any dark fringe.
6. I only
7. I, II
8. I, III
9. I, II, III
10. The electric field associated with a light wave is given by $\quad E=E_{0}\left(\sin \omega_{1} t\right)\left(\sin \omega_{2} t\right)$.
This light wave falls on a metal having a threshold frequency, ν_{o}. The maximum kinetic energy of the emitted photoelectrons will be: (h is Planck's constant)
11. Either $\frac{h \omega_{1}}{2 \pi}$ or $\frac{h \omega_{2}}{2 \pi}$
12. Either $\left(\frac{h \omega_{1}}{2 \pi}-h \nu_{0}\right)$ or $\left(\frac{h \omega}{2 \pi}-h \nu_{0}\right)$
13. $\frac{h\left(\omega_{1}+\omega_{2}\right)}{2 \pi}-h \nu_{0}$
14. Both $\frac{h\left(\omega_{1}+\omega_{2}\right)}{2 \pi}-h \nu_{0}$ and $\frac{h\left|\omega_{1}-\omega_{2}\right|}{2 \pi}-h \nu_{0}$
15. A small object is placed on the principal axis of a convex lens and it forms a real image with a (transverse) magnification of 2 . If the object were to move perpendicular to the principal axis with a speed u, the speed of the image will be:
16. u
17. $u / 2$
18. 2 u
19. 4 u
20. The half-life of a radioactive sample is $T_{1 / 2}$. If we define $\frac{1}{3}$-life $\left(\mathrm{T}_{1 / 3}\right)$ as the time in which the activity of the sample reduces to $\frac{1}{3} \mathrm{rd}$ of its initial value, then:
(1) $T_{1 / 2}=\frac{2}{3} T_{1 / 3}$
$(2) T_{1 / 2}=\sqrt{\frac{2}{3}} \quad T_{1 / 3}$
(3) $\frac{T_{1 / 2}}{\ln 2}=\frac{T_{1 / 3}}{\ln 3}$
(4) $T_{1 / 2} \cdot \ln 2=T_{1 / 3} \ln 3$

Physics - Section B

186. In a transistor, the impurity concentration is highest in
187. emitter
188. base
189. collector
190. none of these, as all have the same concentration.
191. When a transistor is working as an amplifier, the bias across the junctions are as follows ($\mathrm{E}=$ Emitter, $\mathrm{B}=$ Base, C = Collector)
192. EB: reverse bias, CB: reverse bias
193. $E B$: forward bias, $C B$: reverse bias
194. EB: reverse bias, CB: forward bias
195. EB: forward bias, CB: forward bias
196. Which of the following gates, may be used to form all other gates?
197. AND
198. OR
199. NOT
200. NAND
201. A 10:1 step-down transformer has an ideal diode and a 10Ω resistance connected to its secondary circuit while 220 V AC mains is applied to the primary.

Assuming the transformer to be ideal, the current in the primary circuit when the diode is reverse-biased is:

1. 0.22 A
2. $\frac{0.22}{\sqrt{2}} A$
3. $0.22 \sqrt{2} A$
4. zero
5. A 10:1 step-down transformer has an ideal diode and a 10Ω resistance connected to its secondary circuit while 220 V AC mains is applied to the primary.

The peak reverse voltage across the diode is:

1. 220 V
2. $22 \sqrt{2} V$
3. $\frac{22}{\sqrt{2}} V$
4. $44 \sqrt{2} V$
5. The $\alpha_{a c}$ of a transistor is 0.99 . The base current through the transistor changes by $10 \mu A$. The collector current changes by:
6. $9.9 \mu A$
7. $1 \mu A$
8. $99 \mu A$
9. $990 \mu A$
10. The equivalent resistance between A and B of the network shown below is:

11. 1.2Ω
12. 3Ω
13. 1.5Ω if $V_{A}>V_{B}$ and 2Ω if $V_{A}<V_{B}$
14. 2Ω if $V_{A}<V_{B}$ and 1.5Ω if $V_{A}>V_{B}$
15. In the circuit shown in the diagram given below, R is a small resistor. V_{i} is the input voltage between $\mathrm{A} \& \mathrm{~B}$ while V_{o} is the output voltage between $\mathrm{C} \& \mathrm{D}$.

Consider the following two statements and mark the correct option.
(I) If $\mathrm{V}_{\mathrm{i}}>2 \mathrm{~V}$, then $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}$
(II) If $\mathrm{V}_{\mathrm{i}}<2 \mathrm{~V}$, then $\mathrm{V}_{\mathrm{o}}=2 \mathrm{~V}$

1. I is true.
2. II is true.
3. I, II are both true.
4. I, II are both false.
5. A 10:1 step-down transformer has an ideal diode and a 10Ω resistance connected to its secondary circuit while 220 V AC mains is applied to the primary.

The maximum circuit current through the load resistance is:

1. $22 A$
2. $2.2 A$
3. $2.2 \sqrt{2} A$
4. $\frac{2.2}{\sqrt{2}} A$
5. A load resistance is connected to a full-wave rectifier and the peak current through the load is I_{o}. The rms current through the load resistor is:
(1) $\frac{I_{0}}{\sqrt{2}}$
(2) $2\left(\frac{I_{0}}{\sqrt{2}}\right)$
(3) I_{0}
(4) None of the above
6. Consider the circuit shown in the figure given below. The input voltage is V_{i}, the current through the diode is I_{Z}, and the current through the load is I_{L}.

7. If $\mathrm{V}_{\mathrm{i}}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=40 \Omega$, then $\mathrm{I}_{\mathrm{Z}}=0.375 \mathrm{~A}$
8. If $\mathrm{V}_{\mathrm{i}}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=5 \Omega$, then $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$
9. If $\mathrm{V}_{\mathrm{i}}=20 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=20 \Omega$, then $\mathrm{I}_{\mathrm{z}}=0.25 \mathrm{~A}$
10. If $\mathrm{V}_{\mathrm{i}}=20 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \Omega$, then $\mathrm{I}_{\mathrm{Z}}=0.5 \mathrm{~A}$
11. By writing down the truth-table or otherwise, determine the output X of the circuit given below

12. A
13. B
14. A or B
15. $\operatorname{NOT}(A)$
16. We compare npn and pnp transistors: let f represent the fraction of the total current carried by electrons within the transistors.
17. $\mathrm{f}(\mathrm{npn})>\mathrm{f}(\mathrm{pnp})$
18. $\mathrm{f}(\mathrm{npn})<\mathrm{f}(\mathrm{pnp})$
19. $\mathrm{f}(\mathrm{npn})=\mathrm{f}(\mathrm{pnp})$
20. Any of the above may be true depending upon the temperature of the transistors.

199. Assertion (A) :

The resistance of a photodiode decreases when light having photons of sufficient energy is incident on it.

Reason (R) :

When energetic photons fall on the p-n junction of a photodiode, electron-hole pairs are created due to breaking of the valence bonds.

1. The (A) is true but the (R) is false.
2. The (A) is false but the (R) is true.
3. Both the (A) and the (R) are true and the (R) is a correct explanation of the (A).
4. Both the (A) and (R) are true but the (R) is not a correct explanation of the (A).
5. What will be the change in the current through the 5 V cell if the diode D is reversed?

6. No change
7. Increases by 0.2 A
8. Increases by 0.3 A
9. Decreases by 0.2 A

Fill OMR Sheet*
*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

