Botany - Section A

1. Though their main body is sporophyte, yet, free-living photosynthetic gametophyte can be seen in:
2. Bryophytes
3. Pteridophytes
4. Gymnosperms
5. Angiosperms
6. Consider the two statements:
I. Most of the water flow in the roots occurs via the apoplast.
II. The movement of water through the root layers is ultimately symplastic in the endodermis.
7. Only I is correct
8. Only II is correct
9. Both I and II are correct
10. Both I and II are incorrect
11. The number of ATP and NADPH molecules required to make one molecule of glucose through the Calvin pathway respectively is:
12. 6 and 6
13. 6 and 9
14. 12 and 15
15. 18 and 12
16. Match each item in Column I with the one in Column II and select the correct match from the codes given:

COLUMN I COLUMN II [Mineral] [Role in plant]	
A Boron	P
Structure of chlorophyll	
Manganese	Q Synthesis of auxin
Magnesium	R Pollen germination
Zinc	S

Codes:
A B C D

1. P Q R S
2. R S P Q
3. Q S R P
4. S R Q P
5. For each molecule of glucose, the number of molecules of Acetyl CoA entering the Citric Acid Cycle is:
6. 1
7. 2
8. 3
9. 4
10. Both Dinoflagellates and Euglenoids:
11. have stiff cellulosic cell wall
12. have two flagella
13. can behave as heterotrophy when deprived of sunlight
14. are mostly marine and photosynthetic
15. In Dianthus and Primrose, the ovules:
16. are borne on a ridge along the ventral suture of the ovary
17. are attached to axial placenta in a multilocular ovary
18. are borne on central axis and septa are absent
19. is single and attached to placenta at the base of the ovary
20. Periderm and secondary phloem constitute:
21. bark
22. cork
23. heart wood
24. sap wood
25. Krebs cycle takes place in the part labeled:

26. 1
27. 2
28. 3
29. 4
30. Gynoecium is situated in the centre and other parts of the flower are located on the rim of the thalamus almost at the same level in:
31. Mustard
32. China rose
33. Plum
34. Guava

AllMS Level Test (24-Apr) Part Syllabus

11. Consider the two statements:
I. The water-splitting complex is located on the inner side of the thylakoid membrane
II. The NADP reductase enzyme is located on the stromal side of the thylakoid membrane
12. Only I is correct
13. Only II is correct
14. Both I and II are correct
15. Both I and II are incorrect
16. Nostoc:
17. is a green alga
18. is unicellular eukaryote capable of forming filamentous colonies
19. can fix atmospheric nitrogen
20. carry out anoxygenic photosynthesis
21. The PGR ethylene does not:
22. promote senescence and abscission of plant organs
23. affect fruit ripening
24. stimulate closure of stomata in times of water stress
25. help in initiating flowering in pineapple
26. During complete aerobic respiration of one molecule of glucose, there can be a net gain of:
27. 24 ATP
28. 28 ATP
29. 33 ATP
30. 38 ATP
31. Identify the incorrect statement regarding photosynthetic pigments in higher plants:
32. Chlorophyll a is the chief pigment associated with photosynthesis.
33. In the chromatogram, carotenoids appear bright or blue green.
34. Accessory pigments protect chlorophyll a from photooxidation.
35. The maximum absorption of chlorophyll a is in blue and green wavelength region of light.
36. At the root tip, some of the epidermal cells form very fine and delicate, thread-like structures called root hairs in the region of:
37. Root cap
38. Meristematic activity
39. Elongation
40. Maturation
41. Mycelium branched and septate, asexual spores conidia produced exogenously and sexual spores produced endogenously are the features of fungi belonging to:
42. Phycomycetes
43. Ascomycetes
44. Basidiomycetes
45. Deuteromycetes
46. Nitrogen-fixing bacterium that lives in symbiosis with actinorhizal plants in the genus Alnus is:
47. Rhizobium
48. Frankia
49. Azotobacter
50. Azospirillum
51. The relationship between incident light and carbon dioxide fixation by photosynthetic plants, at low light intensities, is a:
52. Straight line relationship
53. Hyperbola relationship
54. Parabola relationship
55. Ellipse relationship
56. Match each item in Column I with the one in Column II and select the correct match from the codes given:

COLUMN I COLUMN II
[Family] [Floral character]
A Brassicaceae P Tetradynamous stamen
B Fabaceae Q Obliquely placed ovary
C Solanaceae R Epitepalous stamen
D Liliaceae S Vexillary aestivation

Codes:
A B C D

1. S R Q P
2. R Q S P
3. P Q S R
4. P S Q R
5. Identify the incorrect statement:
6. Gymnosperms lack vessels in their xylem.
7. In roots, the arrangement of primary xylem is endarch.
8. Gymnosperms lack sieve tubes and companion cells.
9. Phloem parenchyma is absent in most of the monocotyledons.
10. The initial carboxylation reaction:
11. occurs in mesophyll cells in C_{3} plants and in bundle sheath cells in C_{4} plants
12. occurs in bundle sheath cells in C_{3} plants and in mesophyll cells in C_{4} plants
13. occurs in mesophyll cells in both C_{3} plants and in C_{4} plants
14. occurs in bundle sheath cells in both C_{3} plants and in C_{4} plants

AllMS Level Test (24-Apr) Part Syllabus

Contact Number: 9667591930 / 8527521718
23. Column I shows characteristics of members of Red algae. Match each item in Column I with the one in Column II and select the correct match from the codes given:

COLUMN I COLUMN II
A Pigment P Fucoxanthin
B Stored food Q Phycoerythrin
C Cell wall R Floridean starch
D Flagella S Laminarin
T Polysulfate esters
U Algin
V 2-8. equal, apical
W Absent

Codes:
A B C D

1. Q R T W
2. P S U V
3. Q R U W
4. P S T V
5. What is not common to facilitated transport and active transport?
6. Requirement of special membrane proteins
7. Highly selective nature
8. Saturation of transport
9. Uphill transport
10. An example of a chemical used to remove the effect of inhibitory chemicals, present in seeds and causing dormancy, is:
11. Abscisic acid
12. Gibberellic acid
13. Para-ascorbic acid
14. Phenolic acid
15. How is a prion different from viroids, viruses, bacteria, fungi, and parasites?
16. It is non-infectious
17. It is obligate intracellular parasite
18. It is devoid of nucleic acids
19. It is a low molecular weight RNA molecule
20. Match each item in Column I with the one in Column

II and select the correct match from the codes given:

COLUMN I	COLUMN II
[PGR]	[Discovered by]
Auxin	P F W W Went

A Auxin P F. W. Went
B Gibberellic acid Q E. Kurosawa
C Kinetin $\quad \mathrm{R}$ Miller et al.
D Ethylene S H. H, Cousins

Codes:
A B C D

1. P Q R S
2. Q P S R
3. R S Q P
4. S R P Q
5. Which of the following is an activator of carboxylases and alcohol dehydrogenase?
6. Magnesium
7. Molybdenum
8. Zinc
9. Iron
10. In Australian acacia:
11. The leaves are converted into spine for defence
12. The leaves are converted into tendrils for climbing
13. The petiole expands, becomes green, and photosynthesizes food
14. The leaves become fleshy and store food
15. Match each item in Column I with the one in Column II and select the correct match from the codes given:

COLUMN I COLUMN II
[Kingdom] [Cell wall]
A Monera P Absent
B Fungi Q Chitinous
C Plantae \quad R Polysaccharide + amino acid
D Animalia S Cellulosic
Codes:
A B C D

1. R S Q P
2. R Q S P
3. Q S R P
4. P Q R S
5. In Electron Transport System in mitochondria, UQH_{2} passes electrons to:
6. FMN
7. Cytochrome b
8. Fe-S
9. FAD
10. Match each item in Column I with the one in Column II regarding C4 plants and select the correct match from the codes given:

COLUMN I
COLUMN II
A Primary acceptor of carbon dioxide
B
Cells in which Calvin cycle takes place
C Primary carbon dioxide fixation product
D Example

Codes:
A B C D

1. Q S U V
2. P S T W
3. Q R U V
4. P R T W
5. A modification of stem where a lateral branch with short internodes and each node bearing a rosette of leaves and a tuft of roots is found in:
6. Mint and Jasmine
7. Pistia and Eicchornia
8. Banana and Pineapple
9. Chrysanthemum and Strawberry
10. Which of the following is not an anatomical feature of a dicot stem?
11. Hypodermis of collenchyma
12. Endodermis, also called the starch sheath
13. Pericycle semilunar patches of parenchyma
14. Vascular bundle - conjoint and closed
15. 2, $4-\mathrm{D}$, widely used to kill dicotyledonous weeds, is a derivative of:
16. Auxin
17. Cytokinin
18. Gibberellin
19. Abscisic acid

Botany - Section B

36. Assertion: The spread of living pteridophytes is limited and restricted to narrow geographical regions.
Reason: Evolutionarily, pteridophytes are the first terrestrial plants to possess vascular tissue - xylem and phloem.
37. Both assertion and reason are true and the reason is the correct explanation of the assertion
38. Both assertion and reason are true but the reason is not the correct explanation of the assertion
39. Assertion is true but reason is false
40. Both assertion and reason are false
41. Assertion: Some infections with gram-negative bacteria can lead to life-threatening septic shock.
Reason: Lipopolysaccharide layer in gram-negative bacteria can trigger an innate immune response.
42. Both assertion and reason are true and the reason is the correct explanation of the assertion
43. Both assertion and reason are true but the reason is not the correct explanation of the assertion
44. Assertion is true but reason is false
45. Both assertion and reason are false
46. Assertion: Alternaria, Colletotrichum and Trichoderma are kept in the fungal class- Deuteromycetes.
Reason: Asexual and vegetative phases in the life cycle of these fungi are not known.
47. Both assertion and reason are true and the reason is the correct explanation of the assertion
48. Both assertion and reason are true but the reason is not the correct explanation of the assertion
49. Assertion is true but reason is false
50. Both assertion and reason are false
51. Assertion: The respiratory pathway is an amphibolic pathway.
Reason: The respiratory pathway is involved in both anabolism and catabolism.
52. Both assertion and reason are true and the reason is the correct explanation of the assertion
53. Both assertion and reason are true but the reason is not the correct explanation of the assertion
54. Assertion is true but reason is false
55. Both assertion and reason are false
56. Assertion: Spraying sugarcane crops with gibberellins increase the yield by as much as 20 tonnes per acre.
Reason: Sugarcane stores carbohydrates such as sugar in their stems.
57. Both assertion and reason are true and the reason is the correct explanation of the assertion
58. Both assertion and reason are true but the reason is not the correct explanation of the assertion
59. Assertion is true but reason is false
60. Both assertion and reason are false
61. Assertion: Shoot apices modify themselves into flowering apices prior to flowering.
Reason: Shoot apices are the site of perception of light/dark in plants.
62. Both assertion and reason are true and the reason is the correct explanation of the assertion
63. Both assertion and reason are true but the reason is not the correct explanation of the assertion
64. Assertion is true but reason is false
65. Both assertion and reason are false
66. Assertion: The reaction centres in both photosystems in plants is the same.
Reason: The reaction centres of both photosystems are formed by chlorophyll b molecules.
67. Both assertion and reason are true and the reason is the correct explanation of the assertion
68. Both assertion and reason are true but the reason is not the correct explanation of the assertion
69. Assertion is true but reason is false
70. Both assertion and reason are false
71. Assertion: Growth, at a cellular level, is measured by a variety of parameters such as increase in fresh weight, dry weight, length, area, volume and cell number.
Reason: Such parameters are more or less proportional to the increase in protoplasm which is primarily responsible for growth at cellular level.
72. Both assertion and reason are true and the reason is the correct explanation of the assertion
73. Both assertion and reason are true but the reason is not the correct explanation of the assertion
74. Assertion is true but reason is false
75. Both assertion and reason are false
76. Assertion: Water is often the limiting factor for plant growth and productivity in both agricultural and natural environments.
Reason: Plants have very high demands for water.
77. Both assertion and reason are true and the reason is the correct explanation of the assertion
78. Both assertion and reason are true but the reason is not the correct explanation of the assertion
79. Assertion is true but reason is false
80. Both assertion and reason are false
81. Assertion: The maximum concentration of alcohol in beverages that are naturally fermented with yeast is about 13\%.
Reason: In alcohol fermentation, yeast converts pyruvic acid to ethanol and carbon dioxide.
82. Both assertion and reason are true and the reason is the correct explanation of the assertion
83. Both assertion and reason are true but the reason is not the correct explanation of the assertion
84. Assertion is true but reason is false
85. Both assertion and reason are false
86. Assertion: During secondary growth in a dicot stem, the amount of secondary phloem produced is more than secondary xylem.
Reason: The cambium is more active on the outer than on the inner side.
87. Both assertion and reason are true and the reason is the correct explanation of the assertion
88. Both assertion and reason are true but the reason is not the correct explanation of the assertion
89. Assertion is true but reason is false
90. Both assertion and reason are false
91. Assertion: Cyclic photophosphorylation results in the synthesis of ATP but not of NADPH + H+.
Reason: The excited electron does not pass on to NADP+ but is cycled back to the PS I complex through the electron transport chain.
92. Both assertion and reason are true and the reason is the correct explanation of the assertion
93. Both assertion and reason are true but the reason is not the correct explanation of the assertion
94. Assertion is true but reason is false
95. Both assertion and reason are false
96. Assertion: Growth cannot be taken as a defining property of living organisms.
Reason: A multicellular organism grows by cell division.
97. Both assertion and reason are true and the reason is the correct explanation of the assertion
98. Both assertion and reason are true but the reason is not the correct explanation of the assertion
99. Assertion is true but reason is false
100. Both assertion and reason are false
101. Assertion: The membranes of chloroplasts and mitochondria are not included in the endomembrane system of a eukaryotic cell.
Reason: The presence of chloroplasts and mitochondria in eukaryotic cells is explained by endosymbiosis.
102. Both assertion and reason are true and the reason is the correct explanation of the assertion
103. Both assertion and reason are true but the reason is not the correct explanation of the assertion
104. Assertion is true but reason is false
105. Both assertion and reason are false
106. Assertion: Excess of manganese may induce deficiency of calcium.
Reason: Manganese competes with calcium for uptake.
107. Both assertion and reason are true and the reason is the correct explanation of the assertion
108. Both assertion and reason are true but the reason is not the correct explanation of the assertion
109. Assertion is true but reason is false
110. Both assertion and reason are false

Zoology - Section A

51. Which of the following stages of Meiosis is not correctly matched with event of cell division?
52. Metaphase 1. ${ }_{\mathrm{I}}$
53. Anaphase
54. Prophase
55. Metaphase
56. II
of sister chromatids
57. Match each item in Column I with the one in column II and select the correct match from the codes given:

Column I
 Column II

A Cephalochordata P Swim bladder
B Cyclostomata Q Notochord - head to tail
C Chondrichthyes R Males bear claspers on pelvic fins
D Osteichthyes
S
Marine but migrate to freshwater for spawning

Codes:
A B C D

1. S Q P R
2. P QR S
3. Q S R P
4. R P S Q
5. Specific receptors of the vestibular apparatus responsible for maintenance of balance of the body and posture are called:
6. Utricle and Saccule
7. Crista and Macula
8. Macula and Fovea
9. Organ of Corti and Sterocilia
10. Aldosterone acts mainly at renal tubules and stimulates the:
11. Reabsorption of Na^{+}and K^{+}
12. Excretion of Na^{+}and K^{+}
13. Excretion of K^{+}and phosphate ions
14. Reabsorption of Na^{+}and phosphate ions
15. The thick filaments in the ' A ' band are also held together in the middle of this band by a thin fibrous membrane called:
16. I-band
17. Z-line
18. M-line
19. Consider the given statements regarding Sponges.
I. They have a cellular level of organisation
II. Digestion is intracellular
III. Fertilization is external and development is direct
20. Only I and II are correct
21. Only I and III are correct
22. Only II and III are correct
23. I, II and III are correct
24. Consider the given two statements:
I. When a neuron is not conducting any impulse, i.e., resting, the axonal membrane is
comparatively more permeable to potassium ions (K+) and nearly impermeable to sodium ions ($\mathrm{Na}+$).
II. Similarly, the membrane is permeable to negatively charged proteins present in the axoplasm.
25. Only I is correct
26. Only II is correct
27. Both I and II are correct
28. Both I and II are incorrect
29. In Cardiac muscle tissue:

I: Cell junctions fuse the plasma membranes of cardiac muscle cells
II. Communication junctions allow the cell to contract as a unit

1. Only I is correct
2. Only II is correct
3. Both I and II are correct
4. Both I and II are incorrect
5. At 40 mm Hg partial pressure of oxygen, the percentage saturation of haemoglobin with oxygen is expected to be about:
6. 50 \%
7. 75 \%
3.95%
8. 99%
9. What can act as a competitive inhibitor of enzyme Succinic dehydrogenase?
10. ATP
11. FADH_{2}
12. Malonate
13. Pyruvate
14. Identify the incorrect statement:
15. Arrangement of axonemal microtubules in cilia and flagella is described as $9+2$
16. Arrangement of microtubules in centriole is described as $9+0$
17. Centrosome is involved in spindle formation in plant cell division
18. Centrioles form the basal body of cilia and flagella

AllMS Level Test (24-Apr) Part Syllabus

62. Match each item in Column I with the one in Column II and select the correct match from the codes given:

Column I
Column II
A Pivot joint
p Between carpal and metacarpal of thumb
B. Saddle joint Q Between atlas and axis vertebrae

C Gliding joint
D Hinge joint S Humero-ulnar joint

Codes
A B C D

1. P Q R S
2. Q P S R
3. Q P R S
4. P Q S R
5. The medulla oblongata contains centres which control all the following except:
6. respiration
7. cardiovascular reflexes
8. gastric secretions
9. body temperature
10. Which of the following glands do not secrete a protein hormone?
11. Pancreas
12. Thyroid
13. Adenohypophysis
14. Gonads
15. A person has the following values of respiratory volumes:
Tidal Volume $\quad 400 \mathrm{ml}$
Expiratory reserve volume 1000 ml
Inspiratory reserve volume 2500 ml
Residual volume $\quad 1000 \mathrm{ml}$

His functional residual capacity and vital capacity respectively are:

1. 2000 ml and 3900 ml
2. 2000 ml and 4900 ml
3. 1400 ml and 3900 ml
4. 1400 ml and 4900 ml
5. In Chordates
I. Heart is dorsal
II. Central nervous system is ventral
III. A post-anal tail is present
6. Only I and II are correct
7. Only III is correct
8. Only II is correct
9. Only I and III are correct ventricles from excited to normal state?
10. P wave
11. R wave
12. S wave
13. T wave
14. At a place where a 'diffusion boundary' is present in the human body, you are most likely to find
15. Simple squamous epithelium
16. Cuboidal brush bordered epithelium
17. Columnar ciliated epithelium
18. Compound epithelium
19. Match each item in Column I with the one in Column II and select the correct match from the codes given:

Column I Column II
A Plasma P 45% of blood
B. Formed elements Q 55 \% of blood

C Neutrophils R 60-65 \% of total WBCs
D Lymphocytes S 20-25 \% of total WBCs

Codes
A B C D

1. P Q R S
2. Q P S R
3. Q P R S
4. P Q S R
5. A diploid cell has a chromosome number of 8 and DNA content as 8 units. At the end of the S phase, the number of chromosomes and the DNA content respectively will be:
6. 8 and 8
7. 16 and 8
8. 8 and 16
9. 16 and 16
10. The bile released into the second part of the duodenum does not contain:
11. Bile slats
12. Bile pigments
13. Cholesterol
14. Lipases
15. Sphincter of Oddi guards the opening of:
16. Small intestine into the caecun
17. Common hepato-pancreatic duct into duodenum
18. Lower end of oesophagus into stomach
19. Pylorus into the first part of duodenum
20. What is correct regarding the atrial natriuretic factor?
21. It causes vasodilation and reduces blood pressure
22. It acts on the atrial wall of our heart and reduces cardiac output
23. It stimulates angiotensin leading to vasoconstriction
24. It acts on the distal tubule and lead to diuresis.
25. Identify the incorrect statement regarding human eye:
26. The diameter of the pupil is regulated by the muscle fibres of iris.
27. The choroid layer is thin over the posterior two-thirds of the eye ball, but it becomes thick in the anterior part to form the ciliary body.
28. Retina contains three layers of neural cells - from outside to inside - ganglion cells, bipolar cells and photoreceptor cells.
29. The fovea is a thinned-out portion of the retina where only the cones are densely packed and where the visual acuity (resolution) is the greatest.
30. Which of the following is not a feature of animals belonging to Phylum Annelida?
31. Metameric segmentation
32. An open circulatory system
33. Nephridia for osmoregulation and excretion
34. Bilateral symmetry
35. Which of the following is not a function of adrenaline and noradrenaline?
36. Piloerection
37. Pupilary constriction
38. Increase in strength of heart contraction
39. Breakdown of glycogen, lipids, and proteins.
40. Graves’ disease is not characterized by:
41. Enlargement of the thyroid gland
42. Protrusion of eyeballs
43. Increased BMR and weight loss
44. Metal retardation
45. To maintain the pH and ionic balance of the body fluids, the proximal convoluted tubule selectively secretes all the following into the filtrate except:
46. Hydrogen ion
47. Potassium ion
48. Ammonia
49. Bicarbonate ion
50. Platyhelminthes, rotifers and lancelets:
51. are pseudocoelomates
52. have protonephridia as excretory structure
53. do not reproduce by sexual method
54. possess remarkable powers of true regeneration
55. In cockroach:
I. $100-150$ hepatic cecae are present at the junction of foregut and midgut
II. 6 - 8 malpighian tubules are present at the junction of midgut and hindgut
56. Only I is correct
57. Only II is correct
58. Both I and II are correct
59. Both I and II are incorrect
60. Head of Periplaneta americana is formed by the fusion of:
61. 3 segments
62. 4 segments
63. 6 segments
64. 10 segments
65. To increase renal medullary interstitial osmolality, NaCl passes to the interstitium from:
66. The thick segment of ascending limb of the loop of Henle
67. The collecting tubule
68. Descending limb of vasa recta
69. The Proximal Convoluted Tubule
70. Which of the following animals is not matched to its correct scientific name?
71. Penguin: Aptenodytes
72. Tortoise: Testudo
73. Platypus: Macropus
74. Angel fish: Pterophyllum
75. Identify the incorrectly matched pair:
76. Radula - Molluscs
77. Malpighian tubules- Insects
78. Choanocytes- Sponges
79. Cnidocytes - Ctenophora
80. All the following are functions of lymph in the human body except:
81. Helps in digestion of fats
82. Returns proteins and excess interstitial fluid to the bloodstream
83. Transports nutrients and hormones
84. Helps in immunity against disease-causing agents

Zoology - Section B

86. Assertion: Post-menopausal women are at higher risk to develop osteoporosis.
Reason: Levels of oestrogen in post-menopausal women are decreased.
87. Both assertion and reason are true and the reason is the correct explanation of the assertion
88. Both assertion and reason are true but the reason is not the correct explanation of the assertion
89. Assertion is true but reason is false
90. Both assertion and reason are false
91. Assertion: Rh incompatibility related complication does not arise in first pregnancy even if an Rh negative mother is carrying an Rh positive foetus.
Reason: Rh antigens are proteins.
92. Both assertion and reason are true and the reason is the correct explanation of the assertion
93. Both assertion and reason are true but the reason is not the correct explanation of the assertion
94. Assertion is true but reason is false
95. Both assertion and reason are false
96. Assertion: Oxytocin helps in parturition and causes milk ejection from the mammary glands.
Reason: Oxytocin acts on the smooth muscles of our body and stimulates their contraction.
97. Both assertion and reason are true and the reason is the correct explanation of the assertion
98. Both assertion and reason are true but the reason is not the correct explanation of the assertion
99. Assertion is true but reason is false
100. Both assertion and reason are false
101. Assertion: Lipids are macromolecules.

Reason: They have a molecular weight range of ten thousand Daltons and above.

1. Both assertion and reason are true and the reason is the correct explanation of the assertion
2. Both assertion and reason are true but the reason is not the correct explanation of the assertion
3. Assertion is true but reason is false
4. Both assertion and reason are false
5. Assertion: The filtrate gets concentrated as it moves down the descending limb of loop of Henle in the human nephron.
Reason: The descending limb of loop of Henle is impermeable to water but allows transport of electrolytes actively or passively.
6. Both assertion and reason are true and the reason is the correct explanation of the assertion
7. Both assertion and reason are true but the reason is not the correct explanation of the assertion
8. Assertion is true but reason is false
9. Both assertion and reason are false
10. Assertion: Hemichordates are not chordates.

Reason: They do not have a notochord.

1. Both assertion and reason are true and the reason is the correct explanation of the assertion
2. Both assertion and reason are true but the reason is not the correct explanation of the assertion
3. Assertion is true but reason is false
4. Both assertion and reason are false
5. Assertion: Fatty acids and glycerol cannot be absorbed into the blood.
Reason: They are transported into the lymph vessels in the villi.
6. Both assertion and reason are true and the reason is the correct explanation of the assertion
7. Both assertion and reason are true but the reason is not the correct explanation of the assertion
8. Assertion is true but reason is false
9. Both assertion and reason are false
10. Assertion: Damage to parietal or oxyntic cells in gastric mucosa can cause anaemia.
Reason: Parietal or oxyntic cells in gastric mucosa secrete HCl .
11. Both assertion and reason are true and the reason is the correct explanation of the assertion
12. Both assertion and reason are true but the reason is not the correct explanation of the assertion
13. Assertion is true but reason is false
14. Both assertion and reason are false
15. Assertion: Meiosis conserves specific chromosome number of each species across generations in sexually reproducing organisms.
Reason: Meiosis, per se, results in reduction of chromosome number by half.
16. Both assertion and reason are true and the reason is the correct explanation of the assertion
17. Both assertion and reason are true but the reason is not the correct explanation of the assertion
18. Assertion is true but reason is false
19. Both assertion and reason are false
20. Assertion: The sino-atrial node is normally the pacemaker of the human heart.
Reason: It is the only autoexcitable part of the nodal tissue of the human heart.
21. Both assertion and reason are true and the reason is the correct explanation of the assertion
22. Both assertion and reason are true but the reason is not the correct explanation of the assertion
23. Assertion is true but reason is false
24. Both assertion and reason are false
25. Assertion: Living state is a non-equilibrium steady state.
Reason: Living organisms work continuously.
26. Both assertion and reason are true and the reason is the correct explanation of the assertion
27. Both assertion and reason are true but the reason is not the correct explanation of the assertion
28. Assertion is true but reason is false
29. Both assertion and reason are false
30. Assertion: Dietary proteins are the source of essential amino acids.
Reason: All essential amino acids are aromatic.
31. Both assertion and reason are true and the reason is the correct explanation of the assertion
32. Both assertion and reason are true but the reason is not the correct explanation of the assertion
33. Assertion is true but reason is false
34. Both assertion and reason are false
35. Assertion: The amount of carbon dioxide that can diffuse through the diffusion membrane per unit difference in partial pressure is much higher compared to that of oxygen.
Reason: The solubility of carbon dioxide is $20-25$ times lower than that of oxygen.
36. Both assertion and reason are true and the reason is the correct explanation of the assertion
37. Both assertion and reason are true but the reason is not the correct explanation of the assertion
38. Assertion is true but reason is false
39. Both assertion and reason are false
40. Assertion: Vertebrochondral ribs are called as true

ribs.

Reason: Vertebraochondral ribs are attached to the thoracic vertebrae dorsally and are ventrally connected to the sternum.

1. Both assertion and reason are true and the reason is the correct explanation of the assertion
2. Both assertion and reason are true but the reason is not the correct explanation of the assertion
3. Assertion is true but reason is false
4. Both assertion and reason are false
5. Assertion: Low temperature destroys enzymatic activity.
Reason: Proteins are denatured when exposed to low temperatures.
6. Both assertion and reason are true and the reason is the correct explanation of the assertion
7. Both assertion and reason are true but the reason is not the correct explanation of the assertion
8. Assertion is true but reason is false
9. Both assertion and reason are false

Chemistry - Section A

101. In a nitrating mixture $\left(\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}\right), \mathrm{H}_{2} \mathrm{SO}_{4}$ can act as
102. Acid
103. Base
104. Neither acid nor base
105. Both acid as well as base
106. The heats of combustion of $\mathrm{C}, \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ are -94 Kcal, -68 Kcal and -372 Kcal , respectively. The enthalpy of formation of $\mathrm{C}_{2} \mathrm{H}_{6}$ will be
107. +20 K cal
108. -40 K cal
109. -20 K cal
110. +40 K cal
111. The most stable free radical, amongst the following, is
112. Allyl
113. Benzyl
114. Vinyl
115. Phenyl
116. An organic compound contains $\mathrm{C}=40 \%, \mathrm{H}=6.66 \%$, and rest oxygen. The vapour density of this compound is 30. The molecular formula of this compound is
117. $\mathrm{CH}_{2} \mathrm{O}$
118. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
119. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
120. CO_{3}
121. The formal charge on nitrogen in NO_{3}^{-}is
122. -1
123. +1
124. +5
125. -3
126. The correct representation for the formation of $\mathrm{CH}_{4}(\mathrm{~g})$ is-
127. $\mathrm{C}($ diamand $)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{4}(g)$
128. $C($ graphite $)+4 \mathrm{H}(g) \longrightarrow \mathrm{CH}_{4}(g)$
129. $\mathrm{C}($ graphite $)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{4}(g)$
130. $C($ diamand $)+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(g)$
131. Which, of the following, compounds has the highest lattice energy?
132. LiCl
133. BeO
134. LiF
135. MgO
136. The bond order of B_{2} is one. The type of bond and magnetic behavior of B_{2}, respectively, are
137. σ and diamagnetic
138. π and diamagnetic
139. σ and paramagnetic
140. π and paramagnetic
141. For which of the following equations, $\Delta H>\Delta E$?
142. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
143. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
144. $\mathrm{PCl}_{5}(g) \rightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
145. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
146. The electrophile used in the sulphonation of benzene is
147. ${ }^{+} \mathrm{SO}_{3} \mathrm{H}$
148. SO_{3}
149. SO_{2}
150. ${ }^{+} \mathrm{SO}_{3}$
151. For a particular real gas, highest and lowest temperature, respectively, is
152. Boyle temperature and Critical temperature
153. Inversion temperature and Boyle temperature
154. Critical temperature and inversion temperature
155. Inversion temperature and Critical temperature
156. Clean water has Biochemical oxygen Demand (BOD) value of
157. 10 ppm
158. less than 5 ppm
159. 17 ppm
160. 14 ppm
161. 1-Butyne and 2-Butyne can be distinguished by the use of
162. $\mathrm{Na} / \mathrm{NH}_{3}$
163. Ammoniacal silver nitrate
164. Cl_{2}
165. H_{2} and Lindlar's catalyst
166. Which, of the following, elements can form a hydride?
167. Cr
168. Mn
169. Fe
170. Co
171. Which, of the following, has greatest number of atoms at NTP?
172. $1 \mathrm{ml} \mathrm{N}_{2}$
173. $1 \mathrm{ml} \mathrm{CH}_{4}$
174. $1 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
175. $1 \mathrm{ml} \mathrm{NH}_{3}$
176. The IUPAC name of 'Ekamercury' is
177. Ununquadium
178. Ununbiium
179. Unniloctium
180. Unnilquadium
181. On adding inert gas at constant volume, which, of the following, equilibrium shifts in forward direction?
182. $N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 N H_{3}(g)$
183. $P C l_{5}(g) \rightleftharpoons P C l_{3}(g)+C l_{2}(g)$
184. $H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g)$
185. None of these
186. How many peroxide linkages are present in HNO_{5} ?
187. zero
188. 1
189. 2
190. 3
191. Equal volumes of $\mathrm{pH}=4$ and $\mathrm{pH}=6$ solutions are mixed together. The pH of the resulting solution will be
192. 4.3
193. 4.7
194. 5.3
195. 5.7
196. The molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ can show
197. Chain isomerism
198. Position isomerism
199. Metamerism
200. All of these
201. But-1-en-3-yne contains
202. 6σ and 3π bonds
203. 7σ and 2π bonds
204. 7σ and 3π bonds
205. 5σ and 3π bonds
206. When gypsum is heated at $200^{\circ} \mathrm{C}$ then the product formed is
207. Plaster of paris
208. Burnt Plaster
209. $\mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
210. $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$
211. 2-Butyne is hydrogenated in presence of Lindlar's catalyst, The major product formed will be
212. Cis-but-2-ene
213. Trans-but-2-ene
214. 1-Butyne
215. Butane
216. Assertion: The boiling point of neopentane is less than isopentane
Reason: Higher is the branching, the lesser will be the boiling point of a compound.
217. Both assertion and reason are true and the reason is the correct explanation of the assertion
218. Both assertion and reason are true but the reason is not the correct explanation of the assertion
219. Assertion is true but reason is false
220. Both assertion and reason are false.
221. When borax is red heated then a transparent glassy solid is formed. The composition of this glassy solid is
222. $\mathrm{B}_{2} \mathrm{O}_{3}$
223. $\mathrm{NaBO}_{2}+\mathrm{B}_{2} \mathrm{O}_{3}$
224. $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
225. NaBO_{2}
226. The correct relation for the work done in isothermal expansion will be
227. $\mathrm{w}_{\text {reversible }}<\mathrm{w}_{\text {irreversible }}$
228. $\mathrm{w}_{\text {reversible }}>\mathrm{w}_{\text {irreversible }}$
229. $\mathrm{w}_{\text {reversible }}=\mathrm{w}_{\text {irreversible }}$
230. All of the above
231. $\psi_{3,2,0}$ is the representation of the orbital
232. $3 \mathrm{p}_{\mathrm{x}}$
233. $3 \mathrm{~d}_{\mathrm{xy}}$
234. $3 \mathrm{~d}_{\mathrm{z}}{ }^{2}$
235. $3 d_{x^{2}-y^{2}}$
236. The nonaromatic species, amongst the following, is

237.

3.

4.

129.
$x \mathrm{Cl}_{2}+y \mathrm{NaOH} \longrightarrow z \mathrm{zaCl}+a \mathrm{NaClO}_{3}+b \mathrm{H}_{2} O$
The ratio of $\frac{x+y}{z+a+b}$ will be

1. 1
2. 2
3. 2.5
4. 3
5. The solubility of AgCl is minimum in
6. 0.01 M NaCl
7. $0.02 \mathrm{M} \mathrm{CaCl}_{2}$
8. $0.05 \mathrm{M} \mathrm{AgNO}_{3}$
9. $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
10. For the following compound, IUPAC name is

11. 3- Carboxypentan-1,5-dioic acid
12. 1,2,3-tricarboxypropane
13. Propane-1,2,3-tricarboxylic acid
14. All of these
15. In $\mathrm{P}_{4} \mathrm{O}_{10}$, the number of $\mathrm{P}-\mathrm{O}$ and $\mathrm{P}=\mathrm{O}$ bonds, respectively, are
16. 8,4
17. 10, 4
18. 12, 4
19. 16,0

AllMS Level Test (24-Apr) Part Syllabus

133. The aqueous solution of NaHCO_{3} is
134. Acidic
135. Alkaline
136. Slightly alkaline
137. Slightly acidic
138. Which, of the following, ions has the highest ionisation potential?
139. F^{-}
140. Cl^{-}
141. Br^{-}
142. I^{-}
143. When diborane is heated with NH_{3}, a crystalline compound is formed. On red heating this crystalline compound, $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ (inorganic benzene) is formed. In $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$, the hybridized state of B and N , respectively, are
144. sp^{2} and sp^{2}
145. sp^{2} and sp^{3}
146. sp^{3} and sp^{2}
147. sp^{3} and sp^{3}

Chemistry - Section B

136. The number of unpaired electrons in Ni and Ni^{2+}, respectively, are $(\mathrm{Z}$ of $\mathrm{Ni}=28)$
137. 2, 2
138. 2, 4
139. 2, 0
140. 4,2
141. Volume of $\mathrm{N} / 5 \mathrm{NaOH}$ required to neutralise $\mathrm{CH}_{3} \mathrm{COOH}$ which is produced from hydrolysis of 4.4 gm
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ is
142. 125 ml
143. 250 ml
144. 500 ml
145. 1000 ml
146. The specific heats of a gas at constant pressure and at constant volume, respectively, are $0.125 \mathrm{cal} / \mathrm{g}$ and 0.075 $\mathrm{cal} / \mathrm{g}$. The molecular weight of the gas is 40 . The atomicity of the gas will be
147. 1
148. 2
149. 3
150. 4
151. Classical smog and photochemical smog behave, respectively, as
152. Oxidizing agent and reducing agent
153. Oxidizing agent and oxidizing agent
154. Reducing agent and oxidizing agent
155. Reducing agent and reducing agent
156. The volume strength of $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ will be
157. 33.6
158. 22.4
159. 16.8
160. 8.4
161. At high temperature, the Van der Waal's gas equation for one mole of gas is
$1.1-\frac{a}{R T V}$
162. $1+\frac{P b}{R T}$
$3.1+\frac{a}{R T V}$
163. $1-\frac{P b}{R T}$
164. Which element does not react with nitrogen to form a nitride?
165. Mg
166. Na
167. Li
168. Ba
169. The strongest conjugate base is
170. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
171. $C l^{-}$
172. NO_{3}^{-}
173. HSO_{4}^{-}
174. ClO_{4}^{-}contains three π bonds. The type of these π bonds are
175. $3 \mathrm{~d} \pi-\mathrm{p} \pi$
176. $2 \mathrm{~d} \pi-р \pi$ and $1 р \pi-р \pi$
177. $1 \mathrm{~d} \pi-р \pi$ and $2 р \pi-р \pi$
178. Зрл-рт

AllMS Level Test (24-Apr) Part Syllabus

$$
\begin{gathered}
145 . \\
\mathrm{CH}_{2}=C H-C \equiv C H+H B r \rightarrow A(\text { Major }), \\
(1 M o l e)
\end{gathered}
$$

The compound ' A ', in the above reaction, is

```
1.
\(\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}\)
Br
2.
\(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}=\mathrm{CH}_{2}\)
    \(B r\)
3. \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{Br}\)
4.
\(\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\)
|
\(B r\)
```

146. The number of geometrical isomers of $\mathrm{CH}_{3}-\mathrm{CH}$ $=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ are
147. 2
148. 3
149. 4
150. Zero
151. Assertion: $\mathrm{PCl}_{3} \mathrm{Br}_{2}$ has zero dipole moment.

Reason: Br atom occupies axial position while Cl atom occupy equatorial position.

1. Both assertion and reason are true and the reason is the correct explanation of the assertion
2. Both assertion and reason are true but the reason is not the correct explanation of the assertion
3. Assertion is true but reason is false
4. Both assertion and reason are false
5. The hyperconjugation effect is a permanent effect in which localization of σ electrons of the C-H bond of an alkyl group directly attached to an atom of the unsaturated system or to an atom with an unshared p orbital takes place.
Hydrogen attaches to alpha carbon in an allylic compound and alpha carbon of carbon-containing positive charge show hyperconjugation. The orbital diagram showing hyperconjugation in ethyl cation is as follows:

In general, greater the number of alkyl groups attached to a positively charged carbon atom, greater is the hyperconjugation interaction and stabilization of the cation. More the hyperconjugation in the structure, more is the stability.

The most stable carbocation is

$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}$

1.
2.
3.
4.

$\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

$\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

149. Based on the hyperconjugation effect described above:

In which of the following compounds is the double bond longest?

1. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
2. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
3. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
4. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
5. Based on the hyperconjugation effect described above:

Which of the following alkenes has the smallest heat of hydrogenation?

1. But-1-ene
2. 2,3-dimethyl but-2-ene
3. But-2-ene
4. Pent-2-ene

Physics - Section A

151. When the logarithm of the temperature difference between a body and its surroundings is plotted as a function of time, the graph is a
152. straight line with positive slope.
153. straight line with negative slope.
154. exponentially decaying curve.
155. parabola.
156. The acceleration of the 4 kg block is:

157. $\frac{3 \mathrm{~g}}{5}$ down.
158. $\frac{6 g}{5}$ down.
159. $\frac{g}{5}$ down.
160. $\frac{11 \mathrm{~g}}{5}$ down.
161. A liquid of density ρ is forced out through a small hole by means of a piston of cross-section 'A', on which a force F is applied. The flow is streamline. The liquid stream strikes the ground at a distance ' x ' in front of the hole. The hole is in the middle of the right face and its height is ' h ' above the ground. The expression for x^{2} is:

162. $\frac{4 F h}{A \rho g}$
163. $\frac{2 F h}{A \rho g}$
164. $\frac{F h}{A \rho g}$
165. $\frac{F h}{2 A \rho g}$
166. The average momentum of the molecules in a sample of H_{2} - gas at temperature 300 K has a magnitude p_{1} and that for He-gas at the same temperature has the magnitude p_{2}. Then,
167. $p_{1}>p_{2}$
168. $p_{2}>p_{1}$
169. $p_{1}=p_{2}$
170. the relationship between p_{1} and p_{2} depends on pressure.

Hint: Momentum is a vector.
155. If the absolute temperature increases by 1%, the frequency of an organ pipe will:

1. increase by 1%.
2. decrease by 1%.
3. increase by 0.5%.
4. decrease by 0.5%.
5. A particle is projected with a speed u so that it has the maximum horizontal range under gravity. The speed is increased to v (without changing the direction of its projection), so that, after projection, it passes above its previous point of impact but at a height which is equal to its previous maximum height. Then,
6. $2 u=v$
7. $3 u=2 v$
8. $2 u=\sqrt{3} v$
9. $3 u=\sqrt{2} v$
10. A 100 cm wire of mass 40 g is fixed at both ends. A tuning fork, vibrating at a frequency of 50 Hz , sets the wire into resonance in its fundamental mode. Then, the tension in the wire is:
11. 400 N
12. 100 N
13. 25 N
14. 1600 N
15. A ball is released with a velocity $(2 \hat{\imath}+2 \hat{\jmath}) \mathrm{m} / \mathrm{s}$ on the rectangular pool table from the point $(3,0) \mathrm{m}$. All the collisions of the ball are elastic.

After 4 seconds of being released, the location of the ball will be:

1. $(2,2) \mathrm{m}$
2. $(0,1) \mathrm{m}$
3. $(2,1) \mathrm{m}$
4. $(3,2) \mathrm{m}$
5. Two particles of masses m_{1}, m_{2} are placed on the axis of a uniform circular ring of mass M and radius R, on opposite sides of the center of the ring. The distances of m_{1}, m_{2} from the center of the ring are x_{1}, x_{2} respectively, and $x_{1} x_{2} \ll R$. The net force on the ring vanishes. Then,

6. $\frac{m_{1}}{x_{1}}=\frac{m_{2}}{x_{2}}$
7. $\frac{m_{1}}{x_{1}^{2}}=\frac{m_{2}}{x_{2}^{2}}$
8. $\frac{m_{1}}{x_{1}^{3}}=\frac{m_{2}}{x_{2}^{3}}$
9. $m_{1} x_{1}=m_{2} x_{2}$
10. The dimension of which group of quantities is the same?
h : Planck's constant, K : kinetic energy, ω : angular speed/frequency, F : force, L : inductance, i : current, q : charge, t : time, x : distance
11. $h, F t x, L i q$
12. $K, h \omega, \omega L i$
13. $F x, L i^{2}, K \omega$
14. $\frac{F x}{t}, K x, h t$
15. A uniform rod is pivoted at one of its ends, so that it can rotate freely in a vertical plane. Initially, it hangs vertically as shown in the figure. A sharp impulse is delivered to the rod at its lowest end B, towards the right. An impulse is exerted by the pivot at A, due to the constraint. The impulse at A acts

16. to the right.
17. to the left.
18. upward.
19. downward.
20. A glass vessel of volume V_{0} contains a liquid which fills 20% of its volume. When the temperature of the system is raised by $10^{\circ} \mathrm{C}$, the volume of the unfilled portion is found to remain constant. If the coefficient of linear expansion of glass is α, the coefficient of expansion of the liquid is
21. 5α
22. $\frac{3 \alpha}{5}$
23. $\frac{5 \alpha}{3}$
24. 15α
25. Two identical blocks are connected by an ideal spring and the system is allowed to oscillate, when undergoing horizontal displacements in opposite directions, with the centre-of-mass at rest. O is the mid-point of the spring, A is left end point, B is the right end-point. The motion of A is described by: $x_{A}=A_{0} \sin \omega t$ (displacement is taken to be positive rightward).
Then, motion of the point B is described by:

26. $x_{B}=A_{0} \sin \omega t$
27. $x_{B}=A_{0} \cos \omega t$
28. $x_{B}=A_{0} \sin (\omega t+\pi)$
29. $x_{B}=A_{0} \cos (\omega t+\pi)$
30. A particle is released from the top of a smooth hemisphere of radius R, and it slides down along its surface. After it slides down a height $\frac{R}{5}$, its acceleration will be a, where

31. $a<\frac{2 g}{5}$
32. $\frac{2 g}{5}<a<\frac{3 g}{5}$
33. $\frac{3 g}{5}<a<g$
34. $a=g$
35. The pendulum $O A$ has a length L. The bob A is given an initial velocity towards right when it is at its lowest position. Thereafter it moves in a circular path and collides with the hard surface (at 60°) losing 50% of the kinetic energy it had just before the collision. The pendulum rebounds and it reaches a height of $\frac{3 L}{4}$ above its lowest point A. In the absence of the hard surface, it would have risen to a height of

36. $\frac{3 L}{2}$
37. $\frac{5 L}{2}$
38. $2 L$
39. L

166. Assertion (A):

If two particles move with uniform accelerations in different directions, then their relative velocity changes in direction.

Reason (R):

Since the acceleration are in different directions, there is a relative acceleration and hence the relative velocity changes.

1. (A) is true but (R) is false.
2. (A) is false but (R) is true.
3. Both (A) and (R) are true and (R) is the correct explanation of (A).
4. Both (A) and (R) are true but (R) is not the correct explanation of (A).
5. A uniform rod $A B$ of mass m and length L is replaced by three particles - two particles of masses m_{1} each at the ends and another particle of mass m_{2} at its centre. The new system of particles has the same total mass, the same center-of-mass and the same moment of inertia about an axis through its C.M. and perpendicular to $A B$.
If the moment of inertia of the new system of particles is measured about an axis passing through the end A, and perpendicular to $A B$ then it is found to be I_{2}. For the rod, the same quantity is found to be I_{1}. Then

6. $I_{1}=2 I_{2}$
7. $I_{2}=2 I_{1}$
8. $I_{1}=I_{2}$
9. $I_{1}=3 I_{2}$
10. A particle is projected vertically upwards with a speed u and moves under the force of gravity. The distance travelled by the particle during its entire motion (until it returns) is d_{1}. If the force of gravity were to be switched off, and the particle travelled for the same length of time, then the distance travelled is d_{2}. Then,
11. $d_{2}=d_{1}$
12. $d_{2}=2 d_{1}$
13. $d_{2}=3 d_{1}$
14. $d_{2}=4 d_{1}$
15. A uniform rod of mass m, having cross-section A is pushed along its length (L) by means of a force of magnitude, F. There is no friction anywhere. Ignore the weight of the rod. The longitudinal stress in the rod, at a distance $\frac{L}{3}$ from the left end, is:

16. Tensile, $\frac{F}{3 A}$
17. Compressive, $\frac{F}{3 A}$
18. Tensile, $\frac{2 F}{3 A}$
19. Compressive, $\frac{2 F}{3 A}$

170. Assertion (A):

The center-of-mass of an isolated system of particles remains at rest if it is initially at rest.

Reason (R):

Internal forces, acting within a system, cannot change the velocity of the center of mass; which is proportional to the total momentum of the system.

1. (A) is true but (R) is false.
2. (A) is false but (R) is true.
3. Both (A) and (R) are true and (R) is the correct explanation of (A).
4. Both (A) and (R) are true but (R) is not the correct explanation of (A).
5. A thin spherical metallic vessel of radius R contains water, the mass of water being equal to the mass of the vessel that contains it. A hole is made in the bottom so that the water begins to flow out. When the vessel is halfempty the centre of mass is at a distance d from the centre of the vessel

6. $d=\frac{3 R}{16}$
7. $d=\frac{R}{2}$
8. $d=\frac{R}{4}$
9. $d=\frac{R}{8}$
10. The current passing through a certain device doubles when the temperature rises by $10^{\circ} \mathrm{C}$, in the temperature range from $0^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. This effect is used to measure the temperature of a sample. The current is measured to be 5 mA at $15^{\circ} \mathrm{C}$ and then the next measurement shows a current of 50 mA . The temperature of the new measurement is nearly (take $\log _{10} 2 \simeq 0.3$, if required)
11. $150^{\circ} \mathrm{C}$
12. $50^{\circ} \mathrm{C}$
13. $450^{\circ} \mathrm{C}$
14. $25^{\circ} \mathrm{C}$
15. A block of ice floats in water, in a beaker at $0^{\circ} \mathrm{C}$, nearly. The ice melts slowly until the beaker is full of water. As a result, the pressure at the bottom
16. increases slowly.
17. decreases slowly.
18. first increases and then decreases.
19. remains constant.
20. A wooden block floats submerged at the interface of two liquids, the upper one of specific gravity 0.4 and the lower one being water (density: $1 \mathrm{~g} / \mathrm{cc}$) It is observed that the block has $\frac{1}{3}$ of its volume in water and $\frac{2}{3}$ of it in the upper liquid. The density of the block is:
21. 0.5
22. 0.6
23. 0.8
24. 0.9
25. If the ends of the meter stick are maintained at $\theta_{1}{ }^{\circ} \mathrm{C}$ and $\theta_{2}{ }^{\circ} \mathrm{C}$, the temperatures measured at the 25 cm and 80 cm marks are observed to be $35^{\circ} \mathrm{C}$ and $68^{\circ} \mathrm{C}$ respectively. Then the temperatures of the left end $\left(\theta_{1}{ }^{\circ} \mathrm{C}\right)$ and the right end $\left(\theta_{2}{ }^{\circ} \mathrm{C}\right)$ are:
26. $\theta_{1}=0, \theta_{2}=90$
27. $\theta_{1}=10, \theta_{2}=85$
28. $\theta_{1}=20, \theta_{2}=80$
29. $\theta_{1}=30, \theta_{2}=100$
30. A 3 kg-block is pressed against a vertical wall with a coefficient of friction, $\mu=\frac{3}{4}$. What minimum force should be applied to the block in order to prevent it from falling down? Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

31. $\frac{3}{4} \times 30 \mathrm{~N}$
32. $\frac{4}{3} \times 30 \mathrm{~N}$
33. $\frac{3}{5} \times 30 \mathrm{~N}$
34. $\frac{4}{5} \times 30 \mathrm{~N}$
35. A Carnot engine having an efficiency of 25% is driven in reverse, so to act as a refrigerator. The coefficient of performance of the refrigerator is
36. 3
37. 4
38. 5
39. 8
40. A block is suspended from a spring and causes an extension of 2 cm . It is now imparted a kinetic energy E so that the block rises up by exactly 2 cm . If the block were to be given the same kinetic energy upward, without being attached to a spring, it would rise up by
1.1 cm
41. 2 cm
3.4 cm
42. 8 cm
43. When the temperature difference between a body and its surroundings is $20^{\circ} \mathrm{C}$, it loses heat to the surroundings at a rate of 40 W . If the temperature difference increases to $25^{\circ} \mathrm{C}$, the rate of loss of heat is
44. 45 W
45. 50 W
46. 60 W
47. 80 W
48. A uniform cylinder of mass M, radius R and height $3 R$ is placed upright on a horizontal surface. A particle of mass m is placed on the top of the cylinder at its edge. For what minimum value of m will the cylinder topple?

49. $m=3 M$
50. $m=\frac{M}{3}$
51. $m=\frac{3 M}{2}$
52. No value of m will cause the cylinder to topple.
53. The system is at rest initially, due to the force of friction acting on A. If the string connecting the lower blocks is cut, the accelerations of the blocks A, B, C will be, respectively,

54. $\frac{g}{3}$ to left, g upward, g downward.
55. zero, zero, g downward.
56. zero, g upward, g downward.
57. g to right, zero, g downward.
58. A particle starts to move along a straight line under a force that delivers constant power P, starting from rest. The velocity of the particle, v varies with time t, as:
59. $v \propto t$
60. $v \propto \frac{1}{t}$
61. $v \propto \sqrt{t}$
62. $v \propto \frac{1}{\sqrt{t}}$
63. Two identical springs are joined end-to-end to form a single spring and a block is suspended from the combination. The time period of oscillation is T_{1}. Alternatively, if the springs were joined in parallel, the time period is T_{2}. Then
64. $T_{1}=T_{2}$
65. $T_{1}=2 T_{2}$
66. $T_{2}=2 T_{1}$
67. none of the above is true.
68. A block of mass 1 kg moving with a velocity of 4 m / s strikes a second block of mass 2 kg at rest. The first block is brought to rest by the collision. The coefficient of restitution is:
69. $\frac{1}{2}$
70. $\frac{1}{3}$
71. $\frac{2}{3}$
72. $\frac{1}{4}$
73. Suppose that the average kinetic energy (translational \& rotational) of random molecular motion of helium (He) at temperature $T_{H e}$ is equal to that of hydrogen $\left(H_{2}\right)$ at temperature $T_{H_{2}}$. Then,
74. $T_{H_{2}}=T_{H e}$
75. $\frac{T_{H_{2}}}{2}=\frac{T_{H e}}{4}$
76. $5 T_{H_{2}}=3 T_{H e}$
77. $\frac{T_{H_{2}}}{5}=\frac{T_{\text {Не }}}{3}$

Physics - Section B

186. A source of sound moves with a constant velocity. An observer standing close to the line of motion finds the frequency of sound to be 1100 Hz when the source is approaching and 900 Hz when it is receding from him. The frequency of the source is:
187. 1000 Hz
188. 950 Hz
189. 990 Hz
190. 1010 Hz
191. A ball is released with a velocity $(2 \hat{\imath}+2 \hat{\jmath}) \mathrm{m} / \mathrm{s}$ on the rectangular pool table from the point $(3,0) \mathrm{m}$. All the collisions of the ball are elastic.

After the $4^{\text {th }}$ collision with the edges of the board, the location and velocity of the ball will be:

1. $(3,0) \mathrm{m}$ and $(2 \hat{\imath}+2 \hat{\jmath}) \mathrm{m} / \mathrm{s}$
2. $(0,2) \mathrm{m}$ and $(2 \hat{\imath}-2 \hat{\jmath}) \mathrm{m} / \mathrm{s}$
3. $(1,0) \mathrm{m}$ and $(2 \hat{\imath}+2 \hat{\jmath}) \mathrm{m} / \mathrm{s}$
4. $(2,2) \mathrm{m}$ and $(-2 \hat{\imath}-2 \hat{\jmath}) \mathrm{m} / \mathrm{s}$
5. A simple pendulum is made with a thin wire (length: l, area: A, Young's modulus: Y) attached to a heavy bob of mass M. The pendulum is released from the rest with the bob at the same level as the point of suspension and swings down in a circular arc. The elongation in the wire when the bob reaches the lowest point is:
6. $\frac{3 M g l}{A Y}$
7. $\frac{2 M g l}{A Y}$
8. $\frac{3 M g l}{2 A Y}$
9. $\frac{M g l}{A Y}$
10. The quantity "Action" (S) is defined by the equation:
$S=\int_{0}^{t}(K-U) d t$
where K is the kinetic energy, U is the potential energy and the integral is over the time, t during the motion.
The proper unit of action will be
11. $\mathrm{kg}-\mathrm{m} / \mathrm{s}$
12. $\mathrm{kg}-\mathrm{m}^{2}$
13. $\mathrm{kg}-\mathrm{m}^{2}-\mathrm{s}$
14. $\mathrm{kg}-\mathrm{m}^{2} / \mathrm{s}$
15. The gravitational potential energy of a particle of mass m increases by $m g h$, when it is raised through a height h in a uniform gravitational field " g ". If a particle of mass m is raised through a height h in the earth's gravitational field (g : the field on the earth's surface) then the increase in gravitational potential energy is U. Then,
16. $U>m g h$
17. $U<m g h$
18. $U=m g h$
19. any of the above may be true depending on the value of h, considered relative to the radius of the earth.
20. There is no friction anywhere, and the string and the pulley are ideal. Assume that $m_{1}<m_{2}$. The acceleration of m_{2} down the plane is a. Then,

21. as $\frac{m_{1}}{m_{2}} \rightarrow 1, a \rightarrow 0$.
22. as $\frac{m_{1}}{m_{2}} \rightarrow 0, a \rightarrow g$.
23. a varies linearly with $\frac{m_{1}}{m_{2}}$.
24. all the above are true.
25. A uniform rod $A B$ of mass m and length L is replaced by three particles - two particles of masses m_{1} each at the ends and another particle of mass m_{2} at its centre. The new system of particles has the same total mass, the same center-of-mass and the same moment of inertia about an axis through its C.M. and perpendicular to $A B$.
Which of the following is true?

26. $m_{1}=\frac{m}{3}, m_{2}=\frac{m}{3}$
27. $m_{1}=\frac{m}{4}, m_{2}=\frac{m}{2}$
28. $m_{1}=\frac{m}{6}, m_{2}=\frac{2 m}{3}$
29. $m_{1}=\frac{m}{5}, m_{2}=\frac{3 m}{5}$
30. Which of the following statements is true about the motion depicted in the diagram?

31. The acceleration is constant and non-zero.
32. The velocity changes suddenly during the motion.
33. The velocity is positive throughout.
34. All of the above are true.
35. In the figure, the coefficient of friction between the block (mass m) and the horizontal surface is μ. The block is given an initial velocity to the left compressing the spring by x_{1}. The block 'rebounds' and then the spring gets extended - the maximum extension being x_{2}.

36. $x_{1}+x_{2}=\frac{\mu m g}{k}$
37. $x_{1}-x_{2}=\frac{\mu m g}{k}$
38. $x_{1}+x_{2}=\frac{2 \mu m g}{k}$
39. $x_{1}-x_{2}=\frac{2 \mu m g}{k}$
40. Two identical blocks are connected by an ideal spring and the system is allowed to oscillate, when undergoing horizontal displacements in opposite directions, with the centre-of-mass at rest. O is the mid-point of the spring, A is left end point, B is the right end-point. The motion of A is described by: $x_{A}=A_{0} \sin \omega t$ (displacement is taken to be positive rightward).
Call the mid-point of O and B as C and its x-coordinate as x_{C}. Then, the motion of point C of the spring is described by:

41. $x_{C}=A_{0} \sin \left(\omega t+\frac{\pi}{2}\right)$
42. $x_{C}=\frac{A_{0}}{2} \sin \omega t$
43. $x_{C}=\frac{A_{0}}{2} \sin \left(\omega t+\frac{\pi}{2}\right)$
44. $x_{C}=\frac{A_{0}}{2} \sin (\omega t+\pi)$
45. A piece of alloy of mass 250 g (specific heat capacity $=0.1 \times$ that of water) is placed in a furnace and then put into a calorimeter containing 240 g of water at $20^{\circ} \mathrm{C}$. The water equivalent of the calorimeter is 10 g . The final temperature of the mixture is $50^{\circ} \mathrm{C}$. The temperature of the furnace is (nearly)
46. $250^{\circ} \mathrm{C}$
47. $350^{\circ} \mathrm{C}$
48. $600^{\circ} \mathrm{C}$
49. $800^{\circ} \mathrm{C}$
50. As water flows out slowly from a tap, under gravity, it is observed that the cross-section of the stream decreases as it falls down (figure). This effect is due to

51. viscosity of water.
52. surface tension of water.
53. incompressibility and Bernoulli's principle.
54. increase in atmospheric pressure at lower levels.
55. The moment of inertia of a uniform solid cube of mass M and edge L, about an axis passing through one of its edges is
56. $\frac{M L^{2}}{6}$
57. $\frac{M L^{2}}{3}$
58. $\frac{M L^{2}}{2}$
59. $\frac{2 M L^{2}}{3}$
60. During an experiment, an ideal gas is observed to obey the law: $p V^{3}=$ constant, as the process is conducted. If the volume of the gas doubles during this process, the absolute temperature of the gas changes from T to
61. $2 T$
62. $\frac{T}{2}$
63. $4 T$
64. $\frac{T}{4}$
65. A uniform hollow cylindrical shell has an outer radius R_{1} and inner radius R_{2}. If its mass be m then its rotational inertia about its axis is equal to
66. $\frac{1}{2} m\left(R_{2}^{2}-R_{1}^{2}\right)$
67. $\frac{1}{2} m\left(R_{2}^{2}+R_{1}^{2}\right)$
68. $\frac{1}{2} m \frac{R_{2}^{3}-R_{1}^{3}}{R_{2}-R_{1}}$
69. $\frac{1}{2} m \frac{R_{2}^{5}-R_{1}^{5}}{R_{2}^{3}-R_{1}^{3}}$

Fill OMR Sheet*
*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

