Botany - Section A

1. An intervening dikaryophase is seen during the sexual reproduction in members of the fungal class:
2. Phycomycetes and Ascomycetes
3. Ascomycytes and Basidiomycetes
4. Basidiomycetes and Deuteromycetes
5. Phycomycetes and Deuteromycetes
6. The number of carbon atoms in all the following molecules is 4 except in:
7. α ketoglutaric acid
8. Oxaloacetic acid
9. Succinic acid
10. Malic acid
11. Different types of leaves in different phases of life in cotton, coriander and larkspur is an example of:
12. Pleiotropy
13. Phenotypic plasticity
14. Developmental noise
15. Polygenic trait
16. Pusa Sawani and Pusa A-4 are improved varieties of:
17. Okra [Bhindi] and are resistant to fruit and shoot borer
18. Flat bean and are resistant to Jassids and Aphids
19. Cow pea and are resistant to bacterial blight
20. Wheat and are resistant to hill bunt
21. All the following statements regarding collenchyma in plants is true except:
22. Occurs in layers below the epidermis in most of the dicotyledonous plants
23. Cells are thickened at the corners due to deposition of cellulose, hemicelluloses and pectin
24. There is considerable amount of intercellular space between cells
25. Provide mechanical support to the growing parts of the plants
26. The innermost layer of the cortex in the roots that restricts the apoplastic transport of water inside is called as:
27. Hypodermis
28. Endodermis
29. Pericycle
30. Stele
31. Which of the following is a dominant trait in Pisum sativum?
32. Yellow pod colour
33. Green seed colour
34. Axial flower position
35. Constricted pod shape
36. When the ratio of carbon dioxide and oxygen in the vicinity of RuBisCO is 1 , the affinity of the enzyme:
37. is nearly nil for oxygen
38. is about equal for both carbon dioxide and oxygen
39. is much greater for oxygen than carbon dioxide
40. is much greater for carbon dioxide than oxygen
41. In a plant cell:
42. there are multiple vacuoles, each small in size
43. centrioles play prominent role in organization of microtubules
44. cytokinesis occurs through cleavage furrow
45. Secondary cell wall is formed on the inner [towards membrane] side of the cell
46. The strength of linkage between two genes will be:
47. higher if the genes are farther from each other
48. higher if the genes are closer to each other
49. higher if ganetic coupling is present
50. higher if ganetic repulsion is present
51. All the following are correct regarding Methanogens except:
52. They can grow anaerobically on cellulosic material
53. They can produce large amounts of methane along with carbon dioxide and hydrogen
54. They can be found in anaerobic sludge during sewage treatment and in rumen of cattle
55. They are true bacteria and are chemoheterotrophs
56. During glycolysis in plant cells, the enzyme hexokinase catalyzes the phosphorylation of:
I. Glucose
II. Fructose
57. Only I
58. Only II
59. Both I and II
60. Neither I nor II
61. It is possible to induce mutations artificially through the use of radiations. Which of the following is especially suitable for inducing mutations in plants?
62. X rays
63. UV rays
64. γ rays
65. PEG
66. Study the given diagram and select the best option:

67. The mating between I-1 and I-II is consanguineous
68. The first born child of I-1 and I-II is a male
69. The first born child of I-1 and I-II is a female
70. The first born child of I-1 and I-II is affected by a genetic disease
71. Bacteria capable of carrying out reduction of nitrate present in the soil include:
72. Pseudomonas and Thiobacillus
73. Nitrosomanas and Nitrobacter
74. Nitrococcus and Nitrococcus
75. Rhizobium and Bradyrhizobium
76. The reducing power used in Calvin cycle for reduction of carbon dioxide is:
77. NADH
78. NADPH
79. ATP
80. Water
81. Seed plants where separate male and female cones or flowers are present on the same plant are called as:
82. staminate
83. pistillate
84. dioecious
85. monoecious
86. Which of the following, though a characteristic, cannot be a defining property of living organisms?
I. Growth
II. Reproduction
III. Cellular organization with metabolism
IV. Consciousness
87. I and II
88. I and III
89. III and IV
90. II and IV
91. What is not true regarding diffusion in context of biology?
92. Molecules move in a random fashion with a net result that substance move from regions of higher concentration to regions of lower concentration.
93. No ATP energy expenditure takes place.
94. It is a very rapid process dependent on a living system.
95. It is the only means for gaseous transport in plant cells.
96. Which of the following is/are a correct match?

Bulliform large, bubble-shaped epidermal cells that cells occur in groups on the upper surface of the leaves of many monocots. a porous tissue consisting of cells with large intercellular spaces in the periderm of the
II. Lenticells secondarily thickened organs and the bark of woody stems and roots of dicotyledonous flowering plants

1. Only I
2. Only II
3. Both I and II
4. Neither I nor II
5. Identify the incorrect statement:
6. Ray florets of sunflower have epigynous flowers with inferior ovary.
7. In vexillary aestivation, keel are the two largest posterior petals
8. Stamens are united into one bunch in China rose
9. Placentation is marginal in Pea.
10. What provides the electrons needed to replace those removed from photosystem II during non cyclic photophosphorylation?
11. PS I
12. Oxygen
13. Water
14. Carbon dioxide
15. The sporophyte of mosses is more elaborate than that in:
16. Pteridophytes
17. Gymnosperms
18. Angiosperms
19. Liverworts
20. For plants the elements such as sodium, cobalt, silicon and selenium be best described as:
21. Beneficial elements
22. Toxic elements
23. Trace elements
24. Macronutrient elements
25. The cell wall of the cells of an alga has cellulose and algin. Another feature expected in this alga would be:
26. Floridean starch as stored food
27. Phycoerythrin in addition to chlorophyll a, c
28. 2, unequal, lateral flagellar insertions
29. Polysulphate esters in cell wall
30. PGRs can be broadly divided into two groups - plant growth promoters and plant growth inhibitors. Ethylene:
31. belongs to the group of plant growth promoters
32. belongs to the group of plant growth inhibitors
33. could fit either of the groups, but is largely an inhibitor of growth activities
34. could fit either of the groups, but is largely a promoter of growth activities
35. Which of the following is/are a correct match?

Fabaceae Solanaceae
I. Ovary Inferior Monocarpellary unilocular
II. Fruit Endospermous Non-endospermic

1. Only I
2. Only II
3. Both I and II
4. Neither I nor II
5. Identify the correct statement:
6. Roquefort cheese is ripened by a growing a specific bacterium on them
7. LAB improves the nutritional quality of curd by increasing Vitamin A.
8. Aspergillus niger is used for commercial production of citric acid
9. Statins are used to lower blood glucose levels in IDDM
10. Accessory pigments of photosynthesis in higher plants:
I. include chlorophyll b, xanthophylls and carotenoids.
II. absorb light and transfer electrons to chlorophyll a.
III. protect chlorophyll a from photo-oxidation.
11. Only I and II are correct
12. Only I and III are correct
13. Only II and III are correct
14. I, II and III are correct
15. A pure tall plant is crossed with a hybrid tall plant [tall completely dominant over dwarf]. What proportion of progeny is expected to be dwarf?
16. 0
17. $1 / 2$
18. $1 / 4$
19. $3 / 4$
20. Abnormally folded infectious proteins can, in humans, cause:
21. Mad cow disease
22. Scrapie
23. Creutzfeldt-Jacob disease
24. MERS
25. Antipodal is an adjective that means 'diametrically opposite'. Where are the antipodal cells located in an embryosac of an angiosperm?
26. At the micropylar end
27. At the chalazal end
28. In the middle
29. There are three - one at micropylar and two at chalazal end
30. What would be incorrect for phloem in angiosperms?
31. Phloem fibres, at maturity, lose their protoplasm and become dead.
32. The function of sieve tubes is controlled by the nucleus of companion cell.
33. The direction of movement in the phloem can be bidirectional.
34. Phloem sap is mainly water and starch.
35. Palisade parenchyma:
36. are prominent in isobilateral leaf
37. is abaxially placed in dorsi-ventral leaf
38. are loosely arranged oval or round cells extending to the lower epidermis in dorsi-ventral leaf
39. is made of elongated cells vertically arranged parallel to each other in dorsi-ventral leaf
40. Identify the incorrect statement regarding heterotrophic bacteria?
41. They are most abundant bacteria in nature
42. Many of them are important decomposers
43. They play a great role in recycling nutrients like nitrogen, phosphorus, iron and sulphur
44. They have chlorophyll a similar to green plants

Botany - Section B

36. Which of the following would be the oldest in the given periods of geological time scale?
37. Carboniferous
38. Permian
39. Triassic
40. Jurassic
41. Any gas that absorbs incoming solar radiation or outgoing infrared radiation is called as radiatively active gas. One of such gases which is major contributor to total global warming is:
42. Carbon dioxide
43. Methane
44. CFCs
45. $\mathrm{N}_{2} \mathrm{O}$
46. Which of the following seral stages represents the stage that is seen in a typical primary hydrarch succession just before the establishment of final forest stage?
47. Marsh-meadow stage
48. Scrub stage
49. Reed-swamp stage
50. Submerged free-floating plant stage
51. Identify the incorrect statement:
52. Amazon rain forest produces 20% of total oxygen in the Earth's atmosphere
53. All the biodiversity hotspots put together cover about 10 \% of the Earth's land area
54. About 31% of all gymnosperms species in the world face the threat of extinction
55. India's share of the global species diversity is about 8.1 \%
56. In some plants buds can grow where it normally would not. One such location may be in the margins of leaves. Name a plant where such buds are used as vegetative propagules:
57. Eichhornia crassipes
58. Bryophyllum
59. Rhizophora
60. Amorphophallus
61. Sacred groves of Khasi and Jaintia hills are located in:
62. Assam
63. Meghalaya
64. Manipur
65. Arunachal Pradesh
66. Regarding energy flow in an ecosystem:
67. About 2 to 10% of incident solar radiation is PAR
68. An ecosystem is exempt from the Second Law of Thermodyanamics
69. The amount of energy increases at successive trophic levels
70. The number of trophic levels in a grazing food chain is limited
71. Of the total cost of various ecosystem services, the cost of climate regulation and habitat for wildlife is about:
72. 6%
73. 10%
74. 12%
75. 50%
76. Both Xylem and Phloem are complex tissues. At maturity, the living component of xylem and the dead component of phloem respectively are:
77. Xylem parenchyma and Phloem parenchyma
78. Xylem parenchyma and Phloem fibres
79. Xylem fibres and Phloem fibres
80. Xylem fibres and Phloem parenchyma
81. Consider the following statements:
I. Among invertebrates maximum species richness is seen in insects
II. Among vertebrates maximum species richness is seen in mammals
82. Only I is correct
83. Only II is correct
84. Both I and II are correct
85. Both I and II are incorrect
86. What is not true regarding the Montreal Protocol?
87. It is an international treaty designed to protect the ozone layer
88. It was signed in 1987
89. It entered into force on 1 January 1989.
90. Same roadmap was developed for both developed and developing countries for reducing ozone depleting substances
91. What are the consequences of deforestation?
I. Enhanced carbon dioxide concentration in the atmosphere
II. Loss of biodiversity
92. Only I
93. Only II
94. Both I and II
95. Neither I nor II
96. What is the minimum percentage of impurities present that makes domestic sewage unfit for human use?
97. 0.1
98. 1.0
99. 5.0
100. 10.0
101. Identify the option where the features are correctly matched to types with respect to mustard:

| Flower
 symmetry | Ovary
 position | Androecium
 Variable length | Gynoecium |
| :---: | :---: | :--- | :--- | | Parietal |
| :--- |
| 1. Zygomorphic | Inferior | stamens within a |
| :--- |
| flower |\quad| placnetation |
| :--- |

50. The net primary productivity of oceans is about:
51. 25% of the annual net primary productivity of the whole biosphere
52. 33% of the annual net primary productivity of the whole biosphere
53. 66% of the annual net primary productivity of the whole biosphere
54. 70% of the annual net primary productivity of the whole biosphere

Zoology - Section A

51. The frequency of a recessive allele in a population at genetic equilibrium is 0.3 . What is the frequency of homozygous dominant genotype in this population?
52. 0.49
53. 0.09
54. 0.21
55. 0.7
56. Regarding the male accessory sex ducts:
57. About 200 seminiferous tubules are present in testis lobule
58. Epididymis is located along the anterior surface of each testis
59. Vas deferens ascends to the abdomen and loops over the bladder
60. Ducts of seminal vesicles open at the urethral meatus
61. Identify the incorrectly matched pair:
62. Ciliated epithelium Fallopian tubes
63. Dense irregular connective tissue Skin
64. Nissl's granules

Neuron
4. Smooth muscle Intercalated disc
54. In the diffusion membrane in human lungs, a basement membrane supports:
I. Alveolar epithelium
II. Vascular endothelium

1. Only I
2. Only II
3. Both I and II
4. Neither I nor II
5. Chylomicrons are:
6. lipid coated proteinoid mixtures
7. protein coated fat globules
8. glycoprotein coated nucleic acids
9. closed bilayer structures spontaneously formed by hydrated phospholipids
10. All enzymes are:
11. Proteins
12. Thermostable
13. Capable of speeding up a biochemical reaction
14. Capable of working in alkaline pH
15. What is incorrect regarding human heart?
16. It is neurogenic
17. It is derived from embryonic mesoderm
18. It is a muscular pump
19. It is located in thorax between the lungs
20. A cardiovascular centre that can moderate the cardiac function through the autonomic neural system is located in the:
21. Pons varoli
22. Medulla oblongata
23. Hypothalamus
24. Cerebrum
25. Identify the incorrect statement regarding the ultrastructure of a skeletal muscle:
26. Z lines bisect the I band
27. G actin is a polymer of F actins
28. A subunit of troponin masks active binding sites for myosin on the actin filament.
29. Globular head of myosin has ATPase activity.
30. In the human eye:
31. the choroid is avascular
32. lens is held in place by ligaments attached to the ciliary body
33. photopic vision and colour perception is a function of rods
34. aqueous humor has a gel-like consistency
35. The central nervous system in chordates is not:
36. Single
37. Hollow
38. Ventral
39. Derived from embryonic ectoderm
40. A person suffering from Klinefelter's syndrome:
41. has 45 autosomes
42. is likely to have short stature and webbed neck
43. can develop Gynecomastia
44. have normal fertility
45. Regarding 'Saheli':
I. It is a steroidal oral contraceptive pill developed by CDRI
II. It has very few side effects and high contraceptive value
46. Only I is correct
47. Only II is correct
48. Both I and II are correct
49. Both I and II are incorrect
50. A fluid-filled cavity called as 'antrum' is characteristically seen in a:
51. Secondary follicle
52. Tertiary follicle
53. Morula
54. Blastocyst
55. Match each item in Column I with one in Column II and select the best match from the codes given:

COLUMN I COLUMN II

A Comb plates P Cnidaria
B Metagenesis Q Mollusca
C Canal system R Sponges
D Radula S Ctenophora

Codes:
A B C D

1. S P R Q
2. P S R Q
3. P S Q R
4. S P Q R
5. Triploblastic, bilaterally symmetrical animals with true coelom but no segmentation are:
6. Aschelminthes
7. Molluscs
8. Annelids
9. Chordates
10. Which of the following conditions can be caused by exposure to allergens?
11. Asthma
12. Rheumatoid arthritis
13. Japanese encephalitis
14. Leukaemia
15. Identify the correctly matched pair:

Hyposecretion of growth hormone in

1. adults
2. Lack of insulin
3. Hyperthyroidism Graves' disease
4. Hypocortisolism

Diabetes insipidus
Acromegaly

Cushing's
disease
69. Inspiration during breathing occurs when the pressure in lungs is:

1. Zero
2. Negative with respect to atmospheric pressure
3. Equal to atmospheric pressure
4. Positive with respect to atmospheric pressure
5. Consider the given two statements:
I. In a neuron, Nissl's granules are present in dendrites as well as cell body
II. Unmyelinated neurons in peripheral neural system are not enclosed by a Schwann cell
6. Only I is correct
7. Only II is correct
8. Both I and II are correct
9. Both I and II are incorrect
10. Cells in the human body that secrete products like lipids and steroids are likely to have an abundance of:
11. Smooth endoplasmic reticulum
12. Rough endoplasmic reticulum
13. Lysosomes
14. Mitochondria

72. Karl Ernst von Baer:

1. conducted a control experiment to disprove spontaneous generation
2. proposed the concept of pangenesis as the physical basis of heredity
3. disapproved the proposal of Ernst Haeckel [Biogenetic law]
4. was one of the rediscoverers of Mendel's laws
5. A steroid hormone when released increases blood glucose level, causes lipolysis and proteolysis, retards cellular uptake and utilization of amino acids by body cells and has a potent anti-inflammatory effect. This hormone is:
6. Thyroxin
7. Adrenaline
8. Growth hormone
9. Cortisol
10. Droplets can be the mode of transmission of pathogens causing all the following diseases except:
11. Ascariasis
12. Pneumonia
13. Common cold
14. Covid-19
15. Gastric glands do not secrete:
16. Proteolytic enzymes
17. Hormone
18. Lipases
19. Amylases
20. ADH:
I. is released when an excessive loss of fluid from the body activates osmoreceptors in the body.
II. prevents dieresis by facilitating water reabsorption from the initial and proximal parts of the tubules.
21. Only I is correct
22. Only II is correct
23. Both I and II are correct
24. Both I and II are incorrect
25. The number of:
26. Aromatic proteinogenic amino acids is 5
27. Carbon atoms in arachidonic acid including carboxyl carbon is 20
28. Fatty acids in cholesterol is 3
29. Polypeptide chains in quaternary structure of haemoglobin is 2
30. Who amongst the following was an American scientist?
31. J. B. S. Haldane
32. Alexander Oparin
33. Charles Darwin
34. Stanley L. Miller
35. Which of the following is not guarded by the presence of a sphincter?
36. Opening of Oesophagus into Stomach
37. Opening of Stomach into Duodenum
38. Opening of Ileum into Jejunum
39. Opening of common hepato-pancreatic duct into duodenum
40. Thrombokinase:
41. is an enzyme formed in and secreted by the platelets
42. is an enzyme complex required to convert prothrombin into thrombin
43. dissolves the intravascular clots
44. prevents coagulation of the blood
45. Which of the following is not a correctly matched pair?
46. Ear ossicles Total 6 in number
47. Pubic symphysis Fibrous cartilage
48. Gliding joint Between atlas and axis vertebrae
49. Scapula Glenoid cavity
50. What type of chromosomes will not have a short and a long arm?
51. Acrocentric
52. Metacentric
53. Sub-metacentric
54. Both 1 and 2
55. Regarding nervous system of Cockroach:
56. Most of it is held in the head region.
57. The brain is represented by sub-oesophageal ganglion
58. It is located on the dorsal side of the body
59. Compound eyes provide mosaic vision
60. Nephrons closest to the renal medulla are called:
61. Cortical
62. Medullary
63. Juxta-medullary
64. Proto-nephridia
65. Identify hominids who were cave dwellers, used hides to protect their bodies and buried their dead:
66. Homo erectus
67. Homo sapiens
68. Homo neanderthalensis
69. Homo habilis
70. Identify the incorrect statement:
71. Both AIDS and Hepatitis B can be transmitted through sexual contact or infected blood.
72. Chronic use of alcohol can lead to cirrhosis of liver.
73. Nicotine stimulates adrenal cortex to secrete corticosteroids.
74. Morphine is a very effective sedative and painkiller.
75. What is the major problem regarding the livestock of India?
76. The population is very low.
77. The productivity per unit is low.
78. They are not adapted to hot conditions of Indian subcontinent.
79. They have the lowest life span amongst the livestock in the world.
80. Mule:
81. is an interspecific hybrid
82. is fertile
83. do not exhibit hybrid vigour
84. is not of any economic value
85. The strain of Escherechia coli from which the restriction enzyme EcoR I has been isolated is:
86. DH5 α
87. Biopiracy is:
88. the exploration of natural sources for small molecules, macromolecules and biochemical and genetic information that could be developed into commercially valuable products.
89. exploitation of a region's biological resources or indigenous knowledge unethically and without providing fair compensation.
90. the use of living organisms, like microbes and bacteria, in the removal of contaminants, pollutants, and toxins from soil, water, and other environments
91. the process of developing a crop with bioavailable micronutrients in its edible parts.
92. Which of the following is not true regarding spleen?
93. It is a primary lymphoid organ.
94. It has a large reservoir of erythrocytes.
95. It mainly contains lymphocytes and phagocytes.
96. It is a large bean shaped organ in the left upper quadrant of the abdomen.
97. RY 13
98. K1

3. NC101
 COLUMN II

P Ecology
Q Green revolution

C Panchanan Maheshwari R Plant embryology
D G N Ramachandran
S Collagen structure

Codes:
A B C D

1. P Q R S
2. Q R S P
3. R S P Q
4. S P Q R
5. One of the strands of a dsDNA molecule has 5 adenine and 5 cytosine bases. The number of hydrogen bonds in this dsDNA molecule is expected to be:
6. 10
7. 20
8. 25
9. 30
10. Identify the incorrectly matched pair:
11. CT Computed Tomography
12. MRI Magnetic Radiation Imaging
13. NACO National AIDS Control Organization
14. MALT Mucosa Associated Lymphoid Tissue
15. Which of the following is a free-living non-pathogenic nematode, frequently used in the study of developmental genetics, and whose genome has been sequenced?
16. Arabidopsis thaliana
17. Caenorhabditis elegans
18. Drosophila melanogaster
19. Meloidogyne incognitia
20. HIV:
I. uses phagocytic neutrophils as factory to produce more virus particles.
II. destroys B lymphocytes selectively.
21. Only I is correct
22. Only II is correct
23. Both I and II are correct
24. Both I and II are incorrect
25. Under normal physiological conditions, what percent of haemoglobin is saturated with oxygen when the partial pressure of oxygen is 40 mm Hg ?
26. 50
27. 75
28. 90
29. 98
30. While cutting dsDNA the progression of a restriction enzyme digestion can be checked by employing:
31. Agarose gel electrophoresis
32. FISH
33. Ethidium bromide
34. Autoradiography

Chemistry - Section A

101. In case of a colloidal solution, if both liquid dispersed phase and liquid dispersion medium are present, then it is known as
102. Gel
103. Sol
104. Emulsion
105. Foam
106. When ZnO is heated then it gives the appearance of yellow colour. It is due to
107. Metal excess defect
108. Metal deficiency defect
109. Schottky defect
110. Frenkel defect
111. Which of the following carboxylic acids can give Hell Volhard Zelinsky (HVZ) reaction?
112. HCOOH
113. 2,2-dimethyl propanoic acid
114. Benzoic acid
115. Propanoic acid
116. Which of the following alkali metal has the lowest density?
117. Na
118. K
119. Rb
120. Cs
121. On dilution, specific conductivity of the solution
122. Decreases
123. Increases
124. Remains same
125. Cannot be predicted
126. On complete hydrolysis, $X e F_{6}$ gives
127. $X e$
128. XeO_{3}
129. XeOF_{4}
130. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
131. Which of the following compounds is the main cause of depletion of ozone layer?
132. $C C l_{4}$
133. Freons
134. Chloretone
135. Chloroform
136. When CuSO_{4} solution using copper electrodes is electrolysed, pH of the solution
137. Increases
138. Decreases
139. Remains the same
140. Firstly increases and then decreases
141. For which gas, the value of compressibility factor (Z) is greater than 1 ?
142. H_{2}
143. He
144. NH_{3}
145. Both (1) and (2)
146. An amine reacts with benzene sulphonyl chloride to form solid compound which is soluble in alkali. The amine may be
147. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
148. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
149. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
150. $\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
151. Inversion of cane sugar is an example of
152. Unimolecular reaction
153. Pseudounimolecular reaction
154. Bimolecular reaction
155. Second order reaction
156. Which of the following solutions has the minimum freezing point?
157. 0.02 M NaCl
158. 0.05 M Urea
159. $0.01 \mathrm{M} \mathrm{MgCl}_{2}$
160. 0.01 M KCl
161. Maximum value of the rate constant can be achieved by
162. decreasing the activation energy to zero
163. increasing the temperature up to infinity
164. both 1 and 2
165. decreasing the Arrhenius constant
166. Acetic acid dimerises in benzene solution. The value of Van't Hoff factor (i) for the dimerisation of acetic acid is 0.6 . Therefore, the percentage of dimerisation of acetic acid will be
167. 20%
168. 40%
169. 60%
170. 80%
171. Aqueous solution of which of the following salts is not a neutral solution?
172. NaCl
173. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
174. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
175. None of these
176. In $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$, the oxidation state of Cr and Co , respectively, are
177. 0 and +6
178. +2 and +4
179. +3 and +3
180. +4 and +2
181. Which of the following alkanes has the highest melting point?
182. n-pentane
183. Isopentane
184. Neopentane
185. Butane
186. The orbital angular momentum for p-orbital is
187. Zero
188. $\sqrt{2} \hbar$
189. $\sqrt{6} \hbar$
190. $\sqrt{24} \hbar$
191. When chromite ore is heated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and O_{2} then the compound of chromium formed and its colour, respectively, are
192. $\mathrm{Na}_{2} \mathrm{CrO}_{4}$, yellow
193. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, yellow
194. $\mathrm{Na}_{2} \mathrm{CrO}_{4}$, orange
195. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, orange
196. pH of $10^{-7} \mathrm{M} \mathrm{NaOH}$ solution at $25^{\circ} \mathrm{C}$ will be
197. 7
198. 6.7
199. 7.3
200. 8.3
201. When but-2-yne is reacted with H_{2} in presence of Lindlar's catalyst, the product formed is
202. Butane
2.But-1-ene
203. Cis-but-2-ene
204. Trans-but-2-ene
205. The strongest bond is
206. $s p^{3} \frac{\sigma}{} s p^{3}$
207. $s p^{2} \frac{\sigma}{} s p^{2}$
208. $s p \underline{\sigma} s p$
209. $p^{\frac{\pi}{}} p$
210. When hydrated barium peroxide is reacted with ice cold $\mathrm{H}_{2} \mathrm{SO}_{4}$ then $\mathrm{H}_{2} \mathrm{O}_{2}$ is formed. In hydrated barium peroxide, the number of water of crystallisation is
211. 2
212. 4
213. 6
214. 8
215. The most acidic compound amongst the following is
216. o-cresol
217. m-cresol
218. p-cresol
219. o-xylene
220.

For the reaction, $2 A+B \longrightarrow 3 C, 8$ mole of A reacts with 5 mole of B to form C. How many maximum moles of C are formed?

1. 13 mole
2. 15 mole
3. 12 mole
4. 8 mole
5. Which of the following carbohydrates is laevorotatory in nature?
6. Glucose
7. Fructose
8. Mannose
9. Sucrose
10. The formal charge of S in SO_{3} will be
11. Zero
12. +1
13. +2
14. +6
15. For the spontaneity of freezing of water, which condition must be imposed?
16. $\Delta H>T \Delta S$
17. $\Delta H<T \Delta S$
18. $\Delta H=T \Delta S$
19. Freezing of water is always non-spontaneous
20. Amongst the following compounds, ferrimagnetic substance is
21. CrO_{2}
22. $\mathrm{Fe}_{3} \mathrm{O}_{4}$
23. MnO
24. FeO
25. Which of the following halogens has the highest negative electron gain enthalpy?
26. F
27. $C l$
28. $B r$
29. I
30. The purest form of iron is
31. Cast Iron
32. Wrought Iron
33. Pig Iron
34. Steel
35. Amongst the given trioxides of nitrogen, the amphoteric oxide is
36. $\mathrm{P}_{2} \mathrm{O}_{3}$
37. $\mathrm{Sb}_{2} \mathrm{O}_{3}$
38. $\mathrm{Bi}_{2} \mathrm{O}_{3}$
39. None of the above
40. Which of the following solvents favours $S_{N} 2$ mechanism?
41. Non polar solvent
42. Polar protic solvent
43. Polar aprotic solvent
44. All of these
45. Formaldehyde is reacted with ethyl magnesium bromide followed by hydrolysis. The product formed will be
46. Methanol
47. Ethanol
48. Propanol
49. Propan-2-ol
50. The oxidation number of ' P ' in $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ will be
51. -1
52. 0
53. +1
54. +3

Chemistry - Section B

136. The most stable carbanion is
$\stackrel{\odot}{\mathrm{C}} \mathrm{H}_{3}$
137.

$$
\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}
$$

2.

3.
$\left(\mathrm{CH}_{3}\right)_{3}-\stackrel{\ominus}{\mathrm{C}}$
4.
137.
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+x \mathrm{~K} . \mathrm{cal}$
The value of x will be

1. 13.7
2. 27.4
3. Less than 13.7
4. More than 27.4

AllMS Level Test (22-May) Full Syllabus

138. Given the reaction:
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
In this reaction, equivalent weight of HCl will be
139. 36.5
140. 73
141. 18.25
142. 54.75
143. 'Pearl ash' is
144. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
145. NaNO_{3}
146. $\mathrm{K}_{2} \mathrm{CO}_{3}$
147. KNO_{3}
148. When salicylic acid is reacted with phenol in presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, then the product formed is
149. Aspirin
150. Dettol
151. Salol
152. Oil of winter green
153. The monomer units of Nylon-6,10 are
154. Sebacic acid and ethylene glycol
155. Sebacic acid and hexamethylene diammine
156. Adipic acid and ethylene glycol
157. Adipic acid and hexamethylene diammine
158. When formaldehyde is reacted with NH_{3}, then
159. The rate of diffusion is highest for Urotropine is formed. It is used as an
160. Antipyretic 1. CH_{4}
161. Analgesic
162. SO_{2}
163. Antiseptic
164. NO_{2}
165. Antimalarial
166. NH_{3}
167. Which has the highest mass?
168. $2.24 l \mathrm{SO}_{2}$ gas at NTP
169. 0.4 mole NO_{2} gas
170. 3.01×10^{22} molecules of CO_{2} gas
171. In the manufacture of methanol from destructive distillation of wood, pyroligneous acid does not contain
172. Formic acid
173. Acetic acid
174. 5 gm Fe
175. Which of the following ions is the largest in size?
176. Li^{+}(aqueous)
177. $\mathrm{Cs}^{+}(\mathrm{g})$
178. $\mathrm{Li}^{+}(\mathrm{g})$
179. Cs^{+}(aqueous)
180. Methanol
181. Acetone
182. The number of geometrical isomers of

183. 32
184. 20
185. 10
186. 6
187. In which shell of hydrogen atom, velocity of electron is the highest?
188. 1st shell
189. 2nd shell
190. 3rd shell
191. 4th shell
192. When p-chlorotoluene is reacted with liquid KNH_{2} then the major product formed is
193. o-toluidine
194. m-toluidine
195. p-toluidine
196. Toluene
197. The general formula of chain silicate is
198. SiO_{4}^{4-}
199. $\left[\mathrm{SiO}_{3}^{2-}\right]_{n}$
200. $\left[S i_{2} O_{5}^{2-}\right]_{n}$
201. $S i_{2} \mathrm{O}_{7}^{6-}$

Physics - Section A

151. An Atwood's machine with blocks of masses 3 kg and 2 kg is set up in a laboratory. The string is taut and the blocks start moving at $t=0$.

The relative acceleration of the blocks has the magnitude

1. $\frac{g}{5}$
2. $\frac{2 g}{5}$
3. $\frac{3 g}{5}$
4. $\frac{4 g}{5}$
5. The circuit shown in figure is given an input signal V_{i}, which varies with time and the corresponding output is V_{o}. Then,

6. $V_{o}=V_{i}+E$
7. $V_{o}=V_{i}-E$
8. $V_{o}=V_{i}$, only when $V_{i}>E$
9. $V_{o}=V_{i}$, only when $V_{i}<E$
10. A wire, bent into the shape of a right angled triangle $P Q R$, lies with its side $P Q$ parallel to a current carrying wire, and side $Q R$ perpendicular to it. The loop lies in the plane of the wire. EMF induced in the loop when it is moved with constant speed along $P R$ is ε_{1} and it is ε_{2} when moved along $Q R$ with the same constant speed. Then,

11. $\varepsilon_{1}=0, \varepsilon_{2} \neq 0$
12. $\varepsilon_{1} \neq 0, \varepsilon_{2}=0$
13. $\varepsilon_{1}=0, \varepsilon_{2}=0$
14. $\varepsilon_{1} \neq 0, \varepsilon_{2} \neq 0$
15. A block of mass m is placed atop another block of mass M, the combination is at rest on a smooth horizontal table. A force F_{1} is applied to m and another force F_{2} is applied to M, the two acting horizontally, and in opposite directions. Consider the following statements about the acceleration ($a_{c m}$) of the centre of mass of the system. (Take right as positive.)

(A) $a_{c m}=\frac{F_{1}-F_{2}}{m+M}$, if there is no friction acting between m and M
(B) $a_{c m}=\frac{F_{1}-F_{2}}{m+M}$, if there is static friction between m and M
(C) $a_{c m}=\frac{F_{1}-F_{2}}{m+M}$, in all situations
16. only A is true.
17. only B is true.
18. C is true.
19. A, B are true but C is false.
20. Ultraviolet photons, each of energy 20 eV , are incident onto a gas of H-atoms, causing the emission of electrons. The kinetic energy of the emitted electrons has the value
21. 6.4 eV
22. 7.2 eV
23. 3.2 eV
24. 13.6 eV
25. A plane electromagnetic wavefront is incident at an angle of 30° onto a flat surface. The difference between the arrival times of the wave at the points A and B is T, where $A B=L$. Then, the speed of the wavefront in the medium is

26. $\frac{L}{T}$
27. $\frac{2 L}{T}$
28. $\frac{L}{2 T}$
29. $\frac{\sqrt{3} L}{T}$
30. Assertion (A): The magnetic moment of a hydrogen like atom is higher when it is in a state of higher quantum number n.
Reason (R): The magnetic moment of hydrogen like atom, as calculated from Bohr's theory, is directly proportional to the principal quantum number n.
31. (A) is true but (R) is false.
32. (A) is false but (R) is true.
33. Both (A) and (R) are true and (R) is the correct explanation of (A).
34. Both (A) and (R) are true but (R) is not the correct explanation of (A).
35. An uncharged spherical conducting shell of outer radius R has two point charges q_{1}, q_{2} placed within it. The flux of the electric field due to all charges from the outer surface of the sphere is Φ_{0} while the potential of the sphere is V_{0}. The ratio $\frac{\Phi_{0}}{V_{0}}$ is proportional to

36. \sqrt{R}
37. R
38. R^{2}
39. $\frac{1}{R^{2}}$
40. A liquid of density ρ flows through a bent tube of cross-section A, with a speed v. The liquid enters at point A and exits at B in the opposite direction. The radius of the bend is R. The tube lies on a horizontal table. The force required to hold the tube equals

41. $\rho A v^{2}$
42. $2 \rho A v^{2}$
43. $\sqrt{2} \rho A v^{2}$
44. $\rho v^{2} \pi R^{2}$
45. A ball of mass m is projected with a speed u, at an angle of θ with the horizontal. At its highest point, it moves on a smooth horizontal platform with a spring of spring constant k attached, and the ball compresses the spring. The maximum compression in the spring is x. Then

46. $\frac{1}{2} m u^{2}=\frac{1}{2} k x^{2}$
47. $\frac{1}{2} m u^{2} \cos ^{2} \theta=\frac{1}{2} k x^{2}$
48. $\frac{1}{2} m u^{2}=\frac{1}{2} k x^{2} \cos ^{2} \theta$
49. $\frac{1}{2} m u^{2} \sin ^{2} \theta=\frac{1}{2} k x^{2}$
50. The internal energy of a gas is given by $\quad U=\frac{3}{2} p V$. The gas expands in such a way that its internal energy (initially U_{0}) remains constant throughout the process, but its volume changes from V_{0} to $2 V_{0}$. The heat supplied to the gas equals
51. $U_{0} \ln 2$
52. $\frac{1}{2} U_{0} \ln 2$
53. $\frac{1}{3} U_{0} \ln 2$
54. $\frac{2}{3} U_{0} \ln 2$
55. The voltage $V_{A B}=20 V$ at its peak value, and is sinusoidal in time. The current i (in amperes), when plotted as a function of time, is given by

56. Two cars A and B start moving along the same straight road, from the same point, simultaneously. The first car (A) accelerates uniformly to a maximum speed of v_{0} and then decelerates uniformly to a stop. The second car (B) accelerates uniformly to the same maximum speed v_{0} and then decelerates uniformly to a stop. The acceleration of A is twice that of B, and they both spend the same total time during the motion. Then,
(A) distance travelled by $A=$ distance travelled by B
(B) acceleration time of $A=\frac{1}{2}$ acceleration time of B
(C) relative velocity of A w.r.t. B is always positive
(D) deceleration time of $A=2 \times$ deceleration time of B
57. The magnetic field at the center O of the semicircular part of the current-carrying wire, due to the curved and the straight wires (very long), is

58. $\frac{\mu_{0} i}{4 R}$
59. $\frac{\mu_{0} i}{4 R}+\frac{\mu_{0} i}{2 \pi R}$
60. $\left(\frac{\mu_{0} i}{4 R}+\frac{\mu_{0} i}{4 \pi R}\right)$
61. $\left[\left(\frac{\mu_{0} i}{4 R}\right)^{2}+\left(\frac{\mu_{0} i}{2 \pi R}\right)^{2}\right]^{1 / 2}$
62. An Atwood's machine with blocks of masses 3 kg and 2 kg is set up in a laboratory. The string is taut and the blocks start moving at $t=0$.

The work done by tension on the 3 kg block has a magnitude W_{1} while the work done by gravity on the same block has a magnitude W_{2}, since the beginning of motion.

1. $W_{1}=W_{2}$
2. $W_{1}>W_{2}$
3. $W_{1}<W_{2}$
4. Any of the above can be true
5. A is true.
6. A, B are true.
7. A, B, C are true.
8. B, C, D are true.
9. Young's double-slit experiment is conducted with light of wavelength λ. The double-slit is shifted towards the source by a distance L, and the position of the $5^{\text {th }}$ fringe is shifted by

10. $\frac{5 \lambda D}{d}$
11. $\frac{5 \lambda L}{d}$
12. $\frac{5 \lambda(L+D)}{d}$
13. $\frac{5 \lambda(L-D)}{d}$
14. When two identical loudspeakers playing the same frequency are placed equidistant from an observer, a sound of 60 dB is heard if the sources are in phase with each other. However, if the two speakers are out of phase, no sound is heard. If the speakers are played with a phase difference of $90{ }^{\circ}$, the sound heard will be
15. $30 \sqrt{2} d B$
16. $(60+\sqrt{2}) d B$
17. $57 d B$
18. $60 \sqrt{2} d B$
19. Three stars of identical masses m move around a central star of mass M in an orbit of radius r. The net gravitational force acting on any one of the orbiting stars equals
20. $\frac{G M m}{r^{2}}+\frac{2 G m^{2}}{r^{2}}$
21. $\frac{G M m}{r^{2}}+\frac{\sqrt{3} G m^{2}}{r^{2}}$
22. $\frac{G M m}{r^{2}}+\frac{G m^{2}}{\sqrt{3} r^{2}}$
23. $\frac{G M m}{r^{2}}+\frac{2 G m^{2}}{\sqrt{3} r^{2}}$
24. A uniform solid sphere lying on a smooth horizontal surface is acted upon by a horizontal force, which is impulsive and transmits to it a momentum $m v$, where m is the mass of the sphere (see figure). The angular velocity of the sphere is

25. $\frac{v}{r}$
26. $\frac{2 v}{r}$
27. $\frac{3}{2} \frac{v}{r}$
28. $\frac{5}{2} \frac{v}{r}$
29. A sample of magnetic material is placed in a magnetic field. As the magnetic field is increased, its magnetisation increases and finally, it becomes constant - even if the field is increased further.

Now, the temperature of the sample is decreased. The magnetisation

1. increases
2. decreases
3. remains unchanged
4. decreases first and then increases
5. A point charge q is placed within a spherical cavity inside a metallic conductor, slightly off-center. The charge q induces a charge distribution on the inner surface of the cavity. The net force on q due to the induced charges is

6. zero
7. towards the center
8. away from the center
9. either towards or away from the center depending on the sign of q
10. A vessel containing water is heated from the top by means of a heater, just above the water surface. Assume that the temperature of the water was just above $0^{\circ} \mathrm{C}$, in the beginning. The temperature $\left(\theta_{A}\right)$ at the bottom is measured as a function of time. Which, of the following, shows the correct plot?

11. a
12. b
13. с
14. d
15. The decay constant (λ) of a radioactive material X is $5 \times 10^{-18} \mathrm{~s}^{-1}$. The time in which the activity of a sample of X is reduced to half of its initial value is (nearly)
16. $4.4 \times 10^{11} \mathrm{y}$
17. $4.4 \times 10^{9} \mathrm{y}$
18. $8.8 \times 10^{11} \mathrm{y}$
19. $8.8 \times 10^{9} \mathrm{y}$
20. All the resistances in the circuit shown below are 2Ω. The equivalent resistance between A and C is

21. 4Ω
22. 2Ω
23. $\frac{4}{3} \Omega$
24. $\frac{10}{3} \Omega$
25. A parallel beam of width 20 mm is incident onto a lens and the width of the emerging beam decreases at a rate of 1 mm as it travels every 3 cm . The lens has a focal length of
26. 30 cm
27. 60 cm
28. $\frac{20}{3} \mathrm{~cm}$
29. $\frac{40}{3} \mathrm{~cm}$
30. The quantity η is defined by: $\quad \eta=\frac{1}{\mu_{0} \sigma}$
where μ_{0} is the permeability of free space and σ is the electrical conductivity (of a plasma). η is referred to as the magnetic diffusivity. Its SI unit is
31. $\mathrm{m}^{2} / \mathrm{s}$
32. $\mathrm{m} / \mathrm{s}^{2}$
33. $\mathrm{C}-\mathrm{m}^{2} / \mathrm{s}$
34. $\mathrm{T}-\mathrm{m} / \mathrm{s}$
35. The total energy of an electron in the $n^{\text {th }}$ orbit of a hydrogen atom is $\left(-E_{n}\right)$. The de-Broglie wavelength of the electron in this orbit is (mass of electron=m)
36. $\frac{h}{\sqrt{2 m E_{n}}}$
37. $\frac{h}{\sqrt{m E_{n}}}$
38. $\frac{h}{\sqrt{4 m E_{n}}}$
39. $\frac{h c}{\sqrt{E_{n}}}$
40. A ray of light, incident at 45° onto the surface $A B$ of the right angled prism, is reflected from $A C$ and retraces its path backwards. The refractive index of the material of the prism is

41. $\sqrt{2}$
42. 2
43. $2 \sqrt{2}$
44. $2+\sqrt{2}$
45. The capacitance of the system of three parallel plates of plate area A, plate separation d is measured between the center plate (X) and the two outer plates (Y) connected together. It is equal to

46. $\frac{2 \varepsilon_{0} A}{d}$
47. $\frac{\varepsilon_{0} A}{2 d}$
48. $\frac{\varepsilon_{0} A}{d}$
49. $\frac{4 \varepsilon_{0} A}{d}$
50. A large cylindrical piece of a dense solid elastic metal stands on its end as shown in the figure. The metal is uniform and isotropic. The stress in the material as a function of height is shown correctly by

51. In an $A C$ circuit, the power dissipated in a resistance is found to P_{1} when a source voltage of V_{1} is connected across it. If the same resistance is connected in series with a capacitance and the same source is connected across the combination, the power in the resistance is found to be $P_{2}=\frac{P_{1}}{2}$. The phase difference between the voltage and the current is
52. 30°
53. 60°
54. 45°
55. 90°
56. An equimolar mixture of helium $(H e)$ and hydrogen $\left(H_{2}\right)$ gases is kept in a vessel at a temperature of 500 K . Then
57. Helium and hydrogen molecules have the same kinetic energy on average.
58. rms speeds of helium and hydrogen molecules are equal.
59. The translational kinetic energy of hydrogen and helium molecules is equal.
60. All of the above are true.
61. A man, swimming with a speed u_{1}, can cross a river fastest in a time, T. His friend, who swims with a speed u_{2}, reaches the opposite bank in the same time when he swims at an angle of 30° with the bank. Then,
62. $u_{1}=\frac{\sqrt{3}}{2} u_{2}$
63. $u_{1}=\frac{1}{2} u_{2}$
64. $u_{1}=\frac{1}{\sqrt{2}} u_{2}$
65. $u_{1}=\frac{1}{\sqrt{3}} u_{2}$
66. A block of height h and width w is placed on a horizontal table. A horizontal force F is applied parallel to the top surface of the block. The block does not slip due to friction. Let the frictional force on the block be f and the normal reaction of the table on the block be N. Then,

67. N increases as F increases.
68. N does not act through the center of the block.
69. f is greater than F.
70. f acts through the center of the block.
71. An elastic ball is projected vertically upward with a speed u, and it returns to the ground and rebounds, the motion is periodic with a period T. A simple pendulum, having a length equal to maximum altitude attained by this ball, would have a time period of
72. T
73. πT
74. $\pi \sqrt{2} T$
75. $\frac{\pi}{\sqrt{2}} T$

Physics - Section B

186. The average velocity of a projectile from the point of projection to impact is v_{1} while the average velocity from projection to maximum height (H) is v_{2}.
It can be concluded that
187. $v_{1}>v_{2}$
188. $v_{1}<v_{2}$
189. $v_{1}=v_{2}$
190. Any of the above can be true depending on the angle of projection
191. The potential difference $V_{A B}$ (in volts) is plotted as a function of the resistance R. The graph is given by

192. A man of mass M throws a ball of mass m vertically upward. At the beginning of the throw, he holds the ball at rest, and releases it at height h above at the end of it. The ball travels up to a maximum height H above the point of release. The work done by the man on the ball is W_{1} and that done by gravity on the ball is of magnitude W_{2}. Both W_{1} and W_{2} are the work done during the entire motion from when the man begins the throw, till the ball reaches its maximum height. Then,
193. $\frac{W_{1}}{W_{2}}=\frac{m}{M}$
194. $\frac{W_{1}}{W_{2}}=\frac{h}{H}$
195. $\frac{W_{1}}{W_{2}}=\frac{h}{h+H}$
196. $\frac{W_{1}}{W_{2}}=\frac{1}{1}$
197. An input signal to a logic circuit's inputs is represented by a 0 , if the voltage is low (true) and by a 1 , if the voltage is high (false). The truth table representing the operation of the circuit is given by:

A	B	Y (output)
0	0	0
0	1	1
1	0	0
1	1	0

An input consisting of the following is presented to the pins A and B :
pin A: 0110101001
pin B: 1000011100
The output Y is:

1. 0110100001
2. 1000010100
3. 0111100011
4. 1001010010
5. Four identical point charges (q each) are placed at the four corners of a square of diagonal d. The potential at a point which is at a distance $\frac{d}{2}$ above the center of the square is $\left(k=\frac{1}{4 \pi \varepsilon_{0}}\right)$
6. $\frac{8 k q}{d}$
7. $\frac{4 k q}{d}$
8. $\frac{4 \sqrt{2} k q}{d}$
9. $\frac{\sqrt{2} k q}{d}$
10. Three particles of equal mass are connected by massless rods of length L to form an equilateral triangle, $A B C$. This triangle is pivoted at A and allowed to oscillate in its own plane. The time period of small oscillation is

11. $2 \pi \sqrt{\frac{L}{g}}$
12. $2 \pi \sqrt{\frac{2 L}{g}}$
13. $2 \pi \sqrt{\frac{L}{2 g}}$
14. $2 \pi \sqrt{\frac{2 L}{\sqrt{3} g}}$

Hint: $T=2 \pi \sqrt{\frac{I}{m g d}}$
192. A photon of energy E_{p} has the same wavelength as an electron of kinetic energy E_{e}. The rest energy (i.e. $m c^{2}$) of the electron is

1. $\frac{E_{p}^{2}}{E_{e}}$
2. $\frac{E_{e}^{2}}{E_{p}}$
3. $\frac{E_{e}^{2}}{2 E_{p}}$
4. $\frac{E_{p}^{2}}{2 E_{e}}$
5. An ideal gas obeys the law $p^{2} V=$ constant during a reversible thermodynamic process. The relationship between volume (V) and absolute temperature (T) during this process is:
6. $\frac{V}{T}=$ constant
7. $\frac{V^{2}}{T}=$ constant
8. $\frac{T^{2}}{V}=$ constant
9. $T V^{2}=$ constant

AllMS Level Test (22-May) Full Syllabus

194. A block of mass m slides down the smooth inclined surface of a wedge of mass M starting from rest. The wedge is at rest on the horizontal surface beneath it, due to friction. The acceleration of the center of mass of the system of the block and the wedge is

195. $\frac{m g \sin \theta}{m+M}$
196. $\frac{m g \cos \theta}{m+M}$
197. $g \sin \theta$
198. zero
199. A large vessel of liquid of density ρ is contained in a tank. The tank is pulled towards the right with a constant acceleration a. The upper level of the liquid is not shown in the diagram. Then, the pressures at A and B are related by
200. $P_{A}=P_{B}$
201. $P_{A}-P_{B}=L \rho a$
202. $P_{B}-P_{A}=L \rho a$
203. $P_{A}-P_{B}=L_{\rho} \sqrt{a^{2}+g^{2}}$
204. The magnitude of the integral of the quantity $\int \vec{B} \cdot \overrightarrow{d l}$ around the loop $P Q R$ of the equilateral triangle is K. The field at the center of the long solenoid is

205. $\frac{K}{a}$
206. $\frac{K}{b}$
207. $\frac{K}{a-b}$
208. $\frac{K}{a+b}$
209. A box is moving down a frictionless 30° incline, and a particle is projected within the box. The acceleration of the particle relative to the box is

210. g
211. $g \sin 30^{\circ}$
212. $g \cos 30^{\circ}$
213. $g \tan 30^{\circ}$
214. A source of sound of frequency 160 Hz , when moving with a speed v towards a fixed identical vibrating source, produces a beat frequency of 10 Hz in the ground frame. The speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$. The speed v equals
215. $20 \mathrm{~m} / \mathrm{s}$
216. $\frac{68}{3} \mathrm{~m} / \mathrm{s}$
217. $\frac{85}{4} \mathrm{~m} / \mathrm{s}$
218. $25 \mathrm{~m} / \mathrm{s}$
219. A convex lens of focal length 60 cm is placed in the path of a parallel beam, falling parallel to its principal axis. A plane mirror is placed on the principal axis, making an angle of 45° with it, at a distance of 30 cm behind the lens. The distance of the new focus from lens (optical center) is
220. 60 cm
221. $(60+30 \sqrt{2}) \mathrm{cm}$
222. $60 \sqrt{2} \mathrm{~cm}$
223. $30 \sqrt{2} \mathrm{~cm}$
224. In the circuit shown in the adjoining figure, the switch was kept at the position ' 1 ' for a long time. The switch K is suddenly (and smoothly) shifted to position ${ }^{\prime} 2^{\prime}$.
The current through the cell, just after the shift, is

225. $\frac{V_{0}}{2 R}$
226. $\frac{V_{0}}{R}$
227. $\frac{3 V_{0}}{4 R}$
228. zero

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

