Image: Test 7 - Chemistry Contact Number: 9667591930 / 8527521718

SECTION A	6 Why does hydrogen iodide (HI) have a higher boiling point than hydrogen bromide (HBr)?
1 Select the incorrect statement for classical smog:	[Atomic numbers: bromine = 35; iodine = 53]
1. It occurs in a cool humid climate.	1. The iodide ions in HI are larger than the bromide ions in HBr
2. It is also called oxidizing smog.	The H – I covalent bond is stronger than the H – Br
3. It is a mixture of smoke, fog, and sulfur dioxide.	2. covalent bond.
A mixture of smoke, fog, and sulfur dioxide is 4. reducing in nature.	3. There are hydrogen bonds between HI molecules but not between HBr molecules.
2 The compound prepared by prolonged electrolysis	4. The dispersion forces between HI molecules are stronger than those between HBr molecules.
of water is- 1. CO ₂	7 CaCl ₂ and Ca(OCI) ₂ are components of:
2. Methanol	1. gypsum
3. Formaldehyde	2. Portland cement
4. Heavy water	 bleaching powder lime water
3 The following do/does not cause water pollution:	8 Match the items of Column I with items of Column
1. Heavy metals such as Cd, Pb, Hg	
2. Detergents	II and assign the correct code. Column I Column II
3. Polychlorobiphenyls	ABlistered Cu 1. Aluminium
4. Freons	
4 Considering Ellingham diagram, which of the	B Blast furnace $2 \cdot \frac{2Cu_2O + Cu_2S \rightarrow 6Cu +}{SO_2}$
following metals can be used to reduce alumina? I. Fe	C Reverberatory furnace 3. Iron
2. Zn 3. Mg	$D_{\text{process}}^{\text{Hall-Heroult}} 4. \text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$
4. Cu 5 The element whose salts cannot be detected by the	$5. \begin{array}{c} 2 \operatorname{Cu}_2 S + 3\operatorname{O}_2 \rightarrow 2\operatorname{Cu}_2 O \\ + 2\operatorname{SO}_2 \end{array}$
flame test is 1. Mg	Codes
2. Na	A B C D
3. Ca	1. 2 3 4 1
4. Sr	2. 1 2 3 5 3. 5 4 3 2
	3. 5 4 3 2 4. 4 5 3 2
	9 BCl_3 accepts a lone pair of electrons from NH_3 to form y. The geometry of y is different from that of BCl_3 . Select the correct option for y and change in geometry from BCl_3 to y : 1. $y = BCl_3$. NH_3 ; planar to tetrahedral. 2. $y = BCl_3$. NH_3 ; planar to square planar. 3. $y = B(NH_3)Cl Cl_2$; planar to tetrahedral.

Ontact Number: 9667591930 / 8527521718

10 Match List-I with List-II.	15 Select the incorrect statement among the following:
List-I List-II	
(a) Li (i) absorbent for carbon dioxide	1. Diborane is a highly toxic gas
(b) Na (ii) electrochemical cells	2. Higher boranes spontaneously flammable in air
(c) KOH (iii) coolant in fast breeder reactors	3. Diborane undergoes cleavage reactions with Lewis
(d) Cs (iv) photoelectric cell	A Receive and the state of the
Choose the correct answer from the options given	4. Boranes readily hydrolyzed to give boric acid
below: (a) (b) (c) (d)	16 The sum of neutrons and protons in all the isotopes
(a) (b) (c) (d) 1. (ii) (iii) (i) (iv)	of hydrogen will be
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 3
3. (ii) (iv) (ii) (i)	2. 4
4. (i) (iii) (iv) (ii)	3. 5 4. 6
11 The correct statement regarding lithium is:	17 Which of the following can't exist?
	1 LiCl.2H ₂ O
1. It forms Li ₂ O when burnt in O ₂	2 MgCl ₂ .6H ₂ O
2. It has lower melting and boiling point than other alkali metals.	$3 [Al(H_2O)_6]^{3+}$
3. It's compound shows ionic character.	$4 [BeF_6]^{4-}$
4. Lithium is much softer than other alkali metals.	18
12 Choose the correct statement:	Nitrogen and Oxygen are the main
12 Choose the concer statement.	Assertion (A): components in the atmosphere but these
1. Both diamond and graphite are used as dry lubricants.	do not react to form oxides of nitrogen.
Diamond and graphite have a two-dimensional	Reason (R): The reaction between nitrogen and
2. network.	oxygen requires a high temperature.
3. Diamond is covalent and graphite is ionic.	Both (A) and (R) are true and (R) is the correct
4. Diamond is sp ³ hybridised and graphite is sp ²	1. explanation of (A).
⁺ hybridized.	Both (A) and (R) are true but (R) is not the correct
	^{2.} explanation of (A).
	3. (A) is true but (R) is false.
13 Which of the following oxides is acidic in nature?	4. Both (A) and (R) are false.
$\overline{1. B_2O_3}$	19 The molecule which is not produced on partial as
2. $Al_2 O_3$ 3. $Ga_2 O_3$	well as complete hydrolysis of XeF_6 is
5. $Ga_2 O_3$ 4. $In_2 O_3$	1. $XeOF_2$
	2. $XeOF_4$
14 Which among the following group metals do not	$3. XeO_2F_2$
form hydride?	4. XeO ₃
1. Group-7, 8 and 9	
2. Group-6, 7 and 8 3. Group-8, 9 and 10	20 The reaction of NO with N_2O_4 at 250 K gives :
4. Group-9, 10 and 11	$1. N_2O_5$
	$2. \mathrm{NO}_2$
	$3. N_2O$
	$4. N_2O_3$

ONTACT NUMBER: 9667591930 / 8527521718

21 In which of the following reactions conc. H_2SO_4 is	26 Which one is not a D-sugar?
used as an oxidising reagent? a. $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2 HF$ 2. $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$ 3. $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$	1. $\begin{array}{c c} CHO \\ HO - H \\ H - OH \\ CH_2OH \end{array}$ 2. $\begin{array}{c} CHO \\ H - OH \\ HO - H \\ HO - H \\ CH_2OH \end{array}$ 2. $\begin{array}{c} CHO \\ H - OH \\ HO - H \\ CH_2OH \end{array}$
4. NaCl + H ₂ SO ₄ \rightarrow NaHSO ₄ + HCl Choose the correct option 1. (a, b) 2. (b, c) 3. (c, d) 4. (a, d)	3. $\begin{array}{c c} CHO \\ H \rightarrow OH \\ H \rightarrow OH \\ CH_2OH \end{array}$ 4. $\begin{array}{c} CH_2OH \\ CH_2OH \\ CH_2OH \end{array}$ 4. $\begin{array}{c} CH_2OH \\ H \rightarrow OH \\ CH_2OH \end{array}$
 22 The oxoacid of sulfur that does not contain a bond between sulfur atoms is: 1. H₂S₂O₇ 2. H₂S₂O₃ 3. H₂S₄O₆ 4. H₂S₂O₄ 	27 The most stable ion is : 1. $[Fe(OH)_5]^{3-}$ 2. $[FeCl_6]^{3-}$ 3. $[Fe(CN)_6]^{3-}$ 4. $[Fe(H_2O)_6]^{3+}$
 23 On heating with concentrated NaOH solution in an inert atmosphere of <i>CO</i>₂ white phosphorus gives a gas. Which of the following statement is incorrect about the gas? 1. It is highly poisonous and has smell like rotten fish 2. Its solution in the water, decomposes in the presence of light 3. It is more basic than NH₃ 4. It is less basic than NH₃ 	28 Assertion: $[Ti(H_2O)_6]^{4+}$ is coloredwhile $[Sc(H_2O)_6]^{3+}$ is colorless.Reason: d - d transition is not possible in $[Sc(H_2O)_6]^{3+}$.1. Both assertion and reason are true and the reason isthe correct explanation of assertion.2. Both assertion and reason are true but the reason isnot the correct explanation of assertion.3. Assertion is true but the reason is false.4. Assertion is false but the reason is true.
 24 The structure of IF₇ is : 1. Square pyramidal 2. Trigonal bipyramidal 3. Octahedral 4. Pentagonal bipyramidal 25 In a molecule of pyrophosphoric acid, the number of P – OH, P = O and P – O – P bonds/moiety (ies) respectively are : 1. 4, 2 and 0 2. 2, 4 and 1 3. 4, 2 and 1 4. 3, 3 and 3 	29 Which one of the following complexes is an outer orbital complex? (Atomic number Mn=25, Fe=26, Co=27, Ni=28) 1. $[Fe(CN)_6]^{4-}$ 2. $[Mn(CN)_6]^{4-}$ 3. $[Co(NH_3)_6]^{3+}$ 4. $[Ni(NH_3)_6]^{2+}$ 30 The correct order of the following elements with respect to their density is- 1. $Cr < Zn < Co < Cu < Fe$ 2. $Zn < Cu < Co < Fe < Cr$ 3. $Zn < Cr < Fe < Co < Cu$ 4. $Cr < Fe < Co < Cu < Zn$

ONTACT NUMBER: 9667591930 / 8527521718

$e^{2^+}.$ tatement II: Fe ²⁺ is a stronger reducing agent than $r^{2^+}.$ Both statements I and II are true. 2. Statement I is true ad statement II is false. Both statements I and II are false. Statement I is false, statement I is true. 2 Both Co^{3+} and Pt^{4+} have a coordination number f six. Which of the following pairs of complexes will how approximately the same electrical conductance in little aqueous solutions? $CoCl_3. 6NH_3$ and $PtCl_4. 5NH_3$ $CoCl_3. 3NH_3$ and $PtCl_4. 5NH_3$ $CoCl_3. 6NH_3$ and $PtCl_4. 3NH_3$ $CoCl_3. 6NH_3$ and $PtCl_4. 3NH_3$ $CoCl_3. 6NH_3$ and $PtCl_4. 3NH_3$ $Cocl_3. 3NH_3$ and $PtCl_4. 3NH_3$ $Cocl_3. 6NH_3$ and $PtCl_4. 5NH_3$ $Cocl_3. 6NH_3$ and $PtCl_4. 3NH_3$ $Cocl_3. 6NH_3$ and $PtCl_4. 3NH_3$ $Cocl_4. Cocl_4. Cocl$	 31 Statement I: Cr²⁺ is a stronger reducing agent than Fe²⁺. Statement II: Fe²⁺ is a stronger reducing agent than Cr²⁺. 1. Both statements I and II are true. 2. Statement I is true and statement II is false. 3. Both statements I and II are false. 4. Statement I is false, statement II is true. 32 Both Co³⁺ and Pt⁴⁺ have a coordination number of six. Which of the following pairs of complexes will show approximately the same electrical conductance in dilute aqueous solutions? 1. CoCl₃. 6NH₃ and PtCl₄. 5NH₃ 2. CoCl₃. 4NH₃ and PtCl₄. 5NH₃ 3. CoCl₃. 6NH₃ and PtCl₄. 5NH₃ 4. CoCl₃. 6NH₃ and PtCl₄. 3NH₃ 33 Among the following, the species that is both tetrahedral and diamagnetic is- 1. [Ni(CN)₄]²⁻ 2. [Ni(CO)₄] 3. [NiCl₄]²⁻ 4. [Cu(NH₃)₄]²⁺ 34 In a mildly alkaline medium, thiosulphate ion is oxidized by MnO₄⁻ to "A". The oxidation state of sulphur in "A" is- 1. +4 22 4. +6 	$\begin{split} & \operatorname{Cu}^{2+} + \operatorname{NH}_{3} \stackrel{K_{1}}{\leftrightarrow} [\operatorname{Cu}(\operatorname{NH}_{3})]^{2+} \\ & [\operatorname{Cu}(\operatorname{NH}_{3})]^{2+} + \operatorname{NH}_{3} \stackrel{K_{2}}{\leftrightarrow} [\operatorname{Cu}(\operatorname{NH}_{3})_{3}]^{2+} \\ & [\operatorname{Cu}(\operatorname{NH}_{3})_{2}]^{2+} + \operatorname{NH}_{3} \stackrel{K_{4}}{\approx} [\operatorname{Cu}(\operatorname{NH}_{3})_{4}]^{2+} \\ & [\operatorname{Cu}(\operatorname{NH}_{3})_{3}]^{2+} + \operatorname{NH}_{3} \stackrel{K_{4}}{\approx} [\operatorname{Cu}(\operatorname{NH}_{3})_{4}]^{2+} \\ & \operatorname{The value of stability constants K_{1}, K_{2}, K_{3} and K_{4} \\ & \operatorname{are } 10^{4}, 1.58 \times 10^{3}, 5 \times 10^{2} \text{ and } 10^{2} \\ & \operatorname{respectively.} \text{ The overall equilibrium constants for the} \\ & \operatorname{dissociation of } [\operatorname{Cu}(\operatorname{NH}_{3})_{4}]^{2+} \text{ is } x \times 10^{-12}. \text{ The value of} \\ & x \text{ is } \underline{\qquad} \\ & (\operatorname{Rounded off to the nearest integer)} \\ & 1.2 \\ & 2.4 \\ & 3.3 \\ & 4.1 \\ \hline \begin{array}{c} \mathbf{SECTION \ B} \\ 36 \end{array} \\ \text{The correct cyclic structure of } \beta\text{-D-fructofuranose} \end{split}$
	oxidized by MnO ₄ ⁻ to "A". The oxidation state of sulphur in "A" is- 1. +4 2. +2 32	1. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ontact Number: 9667591930 / 8527521718

37 The correct structure of <i>α</i> -anomer of maltose, among the following is- $ \begin{array}{c} $	41 In $[Cr(NH_3)_6]$ $[Co(CN)_6]$, the oxidation state of Cr and Co, respectively, are 1. 0 and +6 2. +2 and +4 3. +3 and +3 4. +4 and +2 42 The correct statements among the following are:
2. $\begin{array}{c c} CH_2OH & CH_2OH \\ H & O & H \\ HO & OH & H \\ H & OH & H \\ H & OH \\ H & OH \\ \end{array}$	 (I). Valence bond theory cannot explain the color exhibited by transition metal complexes. (II). Valence bond theory can predict quantitatively the magnetic properties of transition metal complexes. (III) Valence bond theory cannot distinguish ligands as
3. $\begin{array}{c} CH_2OH \\ H \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ $	 Weak and strong field ones. (I), (II), and (III) (II), and (III) only (I), and (II) only (I), and (III) only
4. $\begin{array}{c} CH_2OH \\ H \\ HO \\ HO \\ HO \\ H \\ OH \\ H \\ OH \\ H \\ $	 43 Which of the following is an anionic detergent? 1. Sodium stearate 2. Sodium lauryl sulphate 3. Cetyltrimethyl ammonium bromide 4. Glyceryl oleate
 38 In which of the following the metallic bond is the strongest? 1. V 2. Fe 3. Cr 4. Sc 	 Terylene is prepared by the condensation of Ethylene glycol with: 1. Benzene-1,2-dicarboxylic acid 2. Benzene-1,3-dicarboxylic acid 3. Benzene-1,4-dicarboxylic acid 4. Benzoic acid
 39 The IUPAC name of the complex- [Ag(H₂O)₂][Ag(CN)₂] is: 1. diaquasilver(I) dicyanidoargentate (I) 2. dicyanidosilver(II) diaquaargentate(II) 3. diaquasilver(II) dicyanidoargentate(II) 4. dicyanidosilver(I) diaquaargentate(I) 	 45 Which of the following compounds is not an antacid? 1. Aluminium hydroxide 2. Cimetidine 3. Phenelzine 4. Ranitidine
 The factors that may be regarded as the main cause of lanthanoid contraction among the following is- Greater shielding of 5d electron by 4f electrons Poorer shielding of 5d electron by 4f electrons Effective shielding of one of the 4f electrons by another in the sub-shell Poor shielding of one of the 4f electrons by another in the sub-shell 	 46 Step-growth polymer, amongst the following, is 1. Polythene 2. PVC 3. Teflon 4. Nylon-6,6

ONTACT NUMBER: 9667591930 / 8527521718

 47 H₂O₂ on oxidation gives : 1. O⁻² 2. OH⁻ 3. O⁻₂ 4. O₂ 48 Which of the following statements about low-density polythene is FALSE? 	Fill OMR Sheet* *If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.
 Its synthesis requires high pressure. It is a poor conductor of electricity. Its synthesis requires dioxygen or a peroxide initiator as a catalyst. It is used in the manufacture of buckets, dustbins, etc. 	CLICK HERE to get FREE ACCESS for 2
 49 Generally water soluble vitamins i.e. B and C cannot be stored in our body except which of the following vitamins: 1. Vitamin B₁ 2. Vitamin B₆ 3. Vitamin B₁₂ 4. Vitamic C 	days of ANY NEETprep course
4. Vitamic C 50 The correct match between Item-I and Item-II : Item-I Item-II (a) Natural rubber (I) 1,3-butadiene + styrene (b) Neoprene (II) 1,3-butadiene + acrylonitrile (c) Buna-N (III) Chloroprene (d) Buna-S (IV) Isoprene Options: (a) (a) (b) (c) (a) (b) (c) (III) (IV) (I) (a) (b) (c) (III) (IV) (I) (a) (b) (c) (a) (b) (c) (III) (IV) (I) (III) (IV) (I) (III) (IV) (I) (III) (IV) (I) (III) (I) (I) (IV) (III) (I) (IV) (III) (I) (IV) (III) (I)	