Botany - Section A

 1.When a shoot tip transforms into a flower,

1. It is always solitary
2. The flower is always short-lived
3. It is never solitary
4. The flower is always long-lived
5.

What is the net gain of number of ATP molecules produced during aerobic respiration of one molecule of glucose?

1. 30
2. 36
3. 38
4. 40
5.

Placentations given below in the diagrams are

(b)

(c)

(d)

1. a - Basal, b- Axile, c- Free central, d - Parietal
2. a - Marginal, b- Axile, c- Basal, d - Superfecial
3. a - Marginal, b- Free central, c- Basal, d - Axile
4. a - Marginal, b- Axile, c- Parietal, d - Free central
5.

Out of the following examples, how many are belonging to Fabaceae, Solanaceae, Liliaceae?
Aloe, Indigofera, Asparagus, Colchicum, Belladonna, Mulaithi

Fabaceae Solanaceae Liliaceae

1.	3	2	1
2.	2	2	2
3.	2	1	3
4.	4	1	1

5.

The synthesis of one molecule of glucose during the Calvin cycle requires.

1. 12 molecules of ATP and 18 molecules of $N A D P H_{2}$
2. 6 molecules of ATP and 12 molecules of $\mathrm{NADPH} \mathrm{H}_{2}$
3. 18 molecules of ATP and 12 molecules of $\mathrm{NADPH} \mathrm{H}_{2}$
4. 12 molecules of each of ATP and $\mathrm{NADPH} \mathrm{H}_{2}$
5.

Read the following statements:
(a) F_{0} part of ATPase is associated with breakdown of proton gradient
(b) A H-carrier contributes in creation of proton gradient
(c) Movement of electrons in ETS is coupled to pumping of protons into the lumen
(d) Formation of NADPH $+H^{+}$is related with the creation of proton gradient

How many of the above statements are correct?

1. Two
2. One
3. Four
4. Three
5.

What is the net gain in a Krebs cycle?

1. $1 \mathrm{FADH}_{2}, 2 \mathrm{NADH}_{2}$ and 1 ATP
2. $2 \mathrm{FADH}_{2}, 2 \mathrm{NADH}_{2}$ and 2 ATP
3. $1 \mathrm{FADH}_{2}, 3 \mathrm{NADH}_{2}$ and 1 ATP
4. $1 \mathrm{FADH}_{2}, 6 \mathrm{NADH}_{2}$ and 2 ATP
5.

Which of the following function can be performed by both parenchyma and collenchyma?

1. Storage.
2. Photosynthesis.
3. Secretion.
4. All.
5.

Match column I with column II and select the correct option.

Column I

a. A_{2+4}
b. Epiphyllous androecium
c. Ovary inferior
d. Gamosepalous

1. a (iii), b (i), c (iv), d (ii)
2. a (ii), b (iv), c (i), d (iii)
3. a (iii), b (ii), c (iv), d (i)
4. a (ii), b (iii), c (i), d (iv)
5.

Match the following columns and select the correct option.

Column-I	Column-II
a. Photolysis of water	(i) C_{4} plants
b. Carboxylation of RuBP	(ii) Non-cyclic photophosphorylation
c. Synthesis of ATP only	(iii) Cyclic photophosphorylation
d. Consumption of 5 ATP per CO_{2} fixed	(iv) Calvin cycle

1. a (ii), b (iv), c (iii), d (i)
2. a (iii), b (iv), c (ii), d (i)
3. a (ii), b (i), c (iii), d (iv)
4. a (iii), b (i), c (ii), d (iv)
5.

When tripalmitin is used as substrate in respiration, the value of RQ is found to be less than one because

1. It contains less number of carbon atoms than oxygen atoms.
2. The amount of CO_{2} evolved is more than the amount of O_{2} consumed.
3. The amount of O_{2} consumed is more than the amount of CO_{2} evolved.
4. The ratio of the numbers of carbon and hydrogen atoms in this molecule is not $1: 2$.
5.

Consider the given floral characters w.r.t. Fabaceae
(a) Zygomorphic flowers
(b) Vexillary calyx
(c) Marginal placentation
(d) Endospermic seed
(e) Diadelphous stamens

1. b, d \& e are incorrect
2. a, c \& e are correct
3. b, c \& e are incorrect
4. a, b, c, d \& e are correct
5.

Which statement is wrong for Krebs' cycle?

1. There are three points in the cycle where NAD^{+}is reduced to $\mathrm{NADH}+\mathrm{H}^{+}$
2. There is one point in the cycle where FAD^{+}is reduced to FADH_{2}
3. During conversion of succinyl Co-A to succinic acid, a molecule of GTP is synthesised
4. The cycle starts with condensation of acetyl group (acetyl Co-A) with pyruvic acid to yield citric acid
5.

Photosynthetic organ originates from \qquad meristem and arranged in \qquad order.

1. Lateral, basipetal
2. Root apical, acropetal
3. Shoot apical, acropetal
4. Intercalary, acropetal
5.

During ethyl alcohol or lactic acid fermentation

1. Pyruvic acid produced in glycolysis is oxidised
2. Products contain no energy
3. $C O_{2}$ is always produced
4. Coenzyme $N A D^{+}$is regenerated
5.

Which of the following statement is correct?

1. Glycolysis is present in facultative anaerobes, not in obligate anaerobes
2. Usually carbohydrates are oxidised to release energy in cellular respiration
3. Oxidation of one molecule of NADH gives rise to 3 molecules of ATP in anaerobic respiration
4. Fermentation takes place under anaerobic conditions in prokaryotes only
5.

Fatty acids enter the aerobic respiratory pathway after being converted to

1. Pyruvate
2. PGAL
3. Acetyl CoA
4. DHAP
5.

CO_{2} is utilized for the carboxylation of RuBP inside the bundle sheath cells of

1. Maize, Sorghum
2. Tomato, Bell pepper
3. Cacti, Sedum
4. Rice, wheat
5.

Below labeled structures (A and B) in the diagram represent a modification of

1. A - Stem

B - Leaf
2. A - Bud

B - Leaf
3. A - Leaf

B - Stem
4. A - Leaf

B - Leaf
20.

Select incorrect statement w.r.t. racemose inflorescence

1. The main axis continues to grow
2. Peduncle bears flowers in basipetal/centrifugal manner
3. The main axis is not terminated into flower
4. It is an indeterminate inflorescence
5.

Drupes are also called as stone fruits because

1. The seeds are stone like
2. Endocarp is always hard and stony
3. Pericarp is undifferentiated and sclerified
4. The mesocarp is edible in most fruits
5.

Select incorrect statement w.r.t. anatomical features of monocot root.

1. Pericycle produces lateral roots and part of vascular cambium
2. Exodermis is present in older roots
3. Conjunctive parenchyma does not produce cambium
4. Well developed pith is present
5.

In which character an isobilateral leaf differs from the dorsiventral leaf?

1. Scattered vascular bundles
2. Undifferentiated mesophylls
3. Absence of stomata with guard cells
4. Conjoint, collateral, and closed vascular bundle
5.

Tissue which provides mechanical strength and flexibility to young dicot stem is present in

1. Pith
2. Endodermis
3. Hypodermis
4. Cortex
5.

Which of the following is correct w.r.t. lenticels?
a. Phellogen forms parenchymatous cells on the outer side
b. It is a lens-shaped opening
c. Helps in exchange of gases
d. Present mostly in woody trees

1. a \& b correct
2. c \& d correct
3. b, c, \& d correct
4. All are correct
5.
6.

The element which cannot be placed along with micronutrients ?

1. Boron
2. Copper
3. Nickel
4. Calcium
5.

Phosphorylation of glucose during glycolysis is catalysed by

1. Phosphoglucomutase
2. Phoshoglucoisomerase
3. Hexokinase
4. Phosphorylase
5.

Identify the option having correct match of hormones with their respective function
a. Apical dominance
b. Xylem differentiation
c. Increased malt yield
d. Delayed ripening

1. a and c - Cytokinin
2. b and c-Gibberellins
3. cand d - ABA
4. a and b - Auxin
5.

Which of the given bacteria is autotrophic, free-living as well as symbiotic nitrogen fixer?

1. Rhizobium
2. Frankia
3. Anabaena
4. Azotobacter

The reduction of one molecule of atmospheric nitrogen $\left(\mathrm{N}_{2}\right)$ into two molecules of ammonia by nitrogenase enzyme requires

1. $4 \mathrm{e}^{-}, 4 \mathrm{H}^{+}$, and 8ATP
2. $4 \mathrm{e}^{-}, 4 \mathrm{H}^{+}$, and 16ATP
3. $8 \mathrm{e}^{-}, 8 \mathrm{H}^{+}$, and 8ATP
4. $8 \mathrm{e}^{-}, 8 \mathrm{H}^{+}$, and 16ATP
5.

In C_{4} plants, PEP carboxylase and RuBisCO enzymes are present respectively in

1. Stroma and Grana
2. Thylakoid and Stroma
3. Cytosol and Stroma
4. Stroma and Cytosol
5.

Prop roots and stilt roots are found respectively in

1. Rhizophora and turnip
2. Banyan and maize
3. Potato and zaminkand
4. Pistia and Eichhornia
5.

Which of the given hormone is an adenine derivative?

1. IAA
2. GA_{3}
3. Zeatin
4. ABA
5.

Match the following columns and select the correct option
Column-I
Column-II
(a) Abscisic acid
(i) Sex expression
(b) Ethylene
(c) Cytokinin plants
(d) Gibberellin dominance
(iii) Stem elongation in rosette
(iv) Counteracts the apical

1. a-(ii), b-(iii), c-(iv), d-(i)
2. a-(iv), b-(ii), c-(i), d-(iii)
3. a-(ii), b-(iv), c-(iii), d-(i)
4. a-(ii), b-(i), c-(iv), d-(iii)
5.

Guttation is the result of :

1. Root pressure
2. Diffusion
3. Transpiration
4. Osmosis

Botany - Section B

36.

According to the chemiosmotic hypothesis, there is a basic difference between respiration and photosynthesis. This is \qquad -

1. In chloroplast, $\mathrm{H}+$ accumulation takes place in the lumen of thylakoid but in mitochondria, this takes place in perimitochondrial space.
2. Accumulation of $\mathrm{H}+$ in chloroplast takes place in matrix i.e., stroma and in mitochondria, this takes place in cristae.
3. In both the mitochondria and chloroplast the accumulation of $\mathrm{H}+$ takes place in inter-membranous space but with a high rate in mitochondria
4. Both 1 and 3 are correct.
5.

Veins of leaf in addition to acting as channels of transport of water, minerals and food materials also

1. Determine extent of incision of lamina
2. Provide rigidity to the leaf blade
3. Hold the leaf blade to light
4. Flutter the leaf in wind thus, helping in cooling of leaf and bringing fresh air.
5.

Which one of the given reaction does not involve decarboxylation?

1. α-ketoglutarate \rightarrow Succinyl CoA
2. Fumarate \rightarrow Malate
3. Oxalo-succinate $\rightarrow \alpha$-ketoglutarate
4. Pyruvate $\quad \rightarrow$ Acetly CoA
5.

Modified aerial stem with the branching of unlimited growth as the photosynthetic structure is

1. Flattened in Opuntia and Euphorbia
2. Fleshy and cylindrical in Euphorbia
3. Cylindrical in Opuntia
4. Cylindrical in Euphorbia and Opuntia
5.

Select incorrectly matched pair.

1. Inferior ovary - Guava
2. Aestivation with unequal petals- Cotton sized petals
3. Polyadelphous condition - Citrus
4. Irregular flower - Canna
5.

Identify 'A' w.r.t. ATP synthesis through chemiosmosis.

1. Cytochromes b and f
2. Cytochrome a and a_{3}
3. Cytochrome bc ${ }_{1}$
4. NADP reductase
5.

Which among the following plants has these characteristics-actinomorphic flower, hypogynous, syncarpous and parietal placentation?

1. China rose
2. Marigold
3. Brinjal
4. Mustard
5.

Identify the wrong statement in the context of cork cambium

1. Cork cambium is also called phellogen
2. Cork cambium is usually developed from the secondary xylem
3. Outer cells of phellogen differentiate into cork
4. Inner part of phellogen leads to the formation of phelloderm
5.

Nitrate assimilation is the process in plant in which

1. N_{2} is converted into NH_{3}
2. NH_{3} is converted into N_{2}
3. NO_{2}^{-}is converted into NO_{3}^{-}
4. NO_{3}^{-}is converted into NO_{2}^{-}
5.

Cyclic photophosphorylation is different from non-cyclic photophosphorylation as the former

1. Is performed by a collaboration of both PS-II and PS-I
2. Does not require any external source of electrons
3. Is connected with photolysis of water
4. Is connected with ATP and NADPH production
5.

Select the incorrect match

1. Low level of Mo, S, N - delay in flowering
2. Inhibition of cell division - due to lack of Mo, S, N, K
3. Death of tissue - due to deficiency of $\mathrm{S}, \mathrm{N}, \mathrm{Cl}$
4. Chlorosis - due to deficiency of N, K, Mg, Fe, Mn
5.

Select the incorrect match from the following

1. One Calvin cycle - Requires 3 ATP and 2 NADPH
2. C_{4} plant - Shows slower process of carbon fixation
3. C_{3} plants $-20-25^{\circ} \mathrm{C}$ is optimum for photosynthesis
4. Hatch and Slack - Primary CO_{2} acceptor pathway is phosphoenolpyruvate
5.

Function of companion cells is :

1. Loading of sucrose into sieve elements
2. Providing energy to sieve elements for active transport
3. Providing water to phloem
4. Loading of sucrose into sieve elements by passive transport
5.

The movement of ions against the concentration gradient will be :

1. Active transport
2. Osmosis
3. Diffusion
4. All of the above
5.

Opening and closing of stomata is due to the :-

1. Hormonal change in guard cells
2. Change in Turgor pressure of guard cells
3. Gaseous exchange
4. Respiration
5.

The ATPase activity of the myosin head is dependent on:

1. Magnesium ions
2. Manganese ions
3. Calcium ions
4. Ferric ions
5.

What is true about the white muscle fibers?

1. Myoglobin content is high
2. They have a large number of mitochondria
3. They depend on anaerobic process for energy
4. They are adapted for slow sustained activities
5.

Zoology - Section A

51.

The human skull has 22 bones with \qquad cranial bones and \qquad facial bones

1. 10,12
2. 14,8
3. 12,10
4. 8,14
5.

Which of the following glands secretes the hormone melatonin?

1. anterior pituitary gland.
2. melanocytes.
3. pineal gland.
4. suprachiasmatic nucleus of hypothalamus

The human ribs are termed as bicephalic because:

1. They have two articulations surfaces on their ventral end
2. They have two articulations surfaces on their dorsal end
3. They have two articulations surfaces on their ventral end and two on dorsal end
4. They have two articulations surfaces on their ventral end and one on dorsal end
5.

Glucocorticoids do not:

1. Stimulate gluconeogenesis
2. Cause lipolysis
3. Cause proteolysis
4. Stimulate cellular uptake and utilization of amino acids
5.

The development of secondary sexual characters in females is primarily controlled by:

1. Estrogen
2. Progesterone
3. LH
4. FSH
5.

Which of the following endocrine glands is under the direct neural regulation of the hypothalamus?

1. Pineal
2. Thymus
3. Posterior pitutary
4. Adrenal medulla
5.

All the following are secreted by the anterior pituitary except:-

1. Prolactin
2. Somatotropin
3. Vasopressin
4. Gonadotropins
5.

Identify the incorrect statement:

1. In males FSH regulates spermatogenesis
2. Thyroid gland produces T 3 and thyroxine (T4) hormones
3. ACTH stimulates secretion of glucocorticoids
4. PTH is a hyperglycemic hormone
5.

Hormones that act by interacting with intracellular include all the following except:

1. Thyroxin
2. Estrogen
3. Epinephrine
4. Cortisol
5.

A person passes a lot of dilute urine and drinks a lot of water but does not have glycosuria. He is most likely suffering from :

1. Type 1 diabetes mellitus
2. Type 2 diabetes mellitus
3. Pituitary diabetes
4. Diabetes insipidus
5.

Consider the following statements:
I. Myasthenia gravis is an autoimmune disorder affecting neuromuscular junction
II. Muscular dystrophy is a progressive degeneration of skeletal muscles mostly due to genetic disorder
III. Tetany is rapid spasms in muscle due to high Ca^{++}in body fluid.

Which of the above statements are true?

1. I and II only
2. I and III only
3. II and III only
4. I, II and III
5.

Which of the following statements about cross-bridges is false?

1. They are composed of myosin
2. They bind to ATP after they attach to actin
3. They contain an ATPase
4. They split ATP before they attach to actin
5.

The longest bone of the body is

1. Phalanges
2. Tarsal
3. Femur
4. Metatarsal
5.

Which of the following muscles act involuntarily?
(a) Striated muscles
(b) Smooth muscles
(c) Cardiac muscles
(d) Skeletal muscles

1. (a) \& (b)
2. (b) \& (c)
3. (c) \& (d)
4. (a) \& (d)
5.

Read the following statements (A-D):-
(A) A neural signal reaching the neural muscular junction releases adrenalin.
(B) Many monomeric proteins called meromyosin constitute one thin filament.
(C) A complex protein troponin is distributed at irregular intervals on the tropomyosin.
(D) During shortening of muscle, the I-bands get reduced.

How many of the above statements are true?

1. Four
2. One
3. Three
4. Two
5.

Match the following:-
(i) Fibrous Joint vertebrae.
(ii) Cartilaginous Joint pectoral girdle.
(iii) Pivot Joint
(b) Between humerus and
(iv) Ball and Socket Joint axis.
(a) Between two adjacent

1. iv - (d), iii - (b), i - (c), ii - (a)
2. i - (a), ii - (c), iii - (d), iv - (b)
3. i - (c), ii - (a), iii - (d), iv - (b)
4. i - (a), ii - (d), iii - (b), iv - (c)
5.

The blood calcium level is lowered by the deficiency of 1. parathormone
2. thyroxine
3. calcitonin
4. Both 1. and 3.
71.

The hormone that reduces the destruction of bones it also enhances deposition of Ca^{+2} in bones thus making them in solid and strong. This hormone is:-

1. Collips hormone
2. Thyrocalcitonin
3. Thyroxine
4. Vasopressin
5.

Which of the following includes non-muscular movement?
(a) Protoplasmic streaming
(b) Pseudopodial movements
(c) Flagellar movements
(d) Ciliary movement

1. (a) and (b)
2. (a), (c) and (d)
3. (a), (b), (c) (d)
4. (c) and (d)
5.

Acromion process is related to

1. Scapula
2. Humerus
3. Femur
4. Tibia
5.

Consider the following statements:
I. Somatic neural system relays impulses from CNS to skeletal muscles.
II. Autonomic neural system transmits impulses from CNS to involuntary organs and smooth muscles
III. Unmyelinated nerve fibres are commonly found in spinal and cranial nerves

Which of the above statements are true?

1. I and II only
2. I and III only
3. II and III only
4. I,II and III
5.

Consider the following statements:
I. The resting axonal membrane is nearly impermeable to sodium ions.
II. Depolarization of the axonal membrane is due to influx of sodium ions.
III. The size of the action potential, if produced, does not depend on the strength of the stimulus.

Which of the above statements are true?

1. I and II only
2. I and III only
3. II and III only
4. I, II and III
5.

Consider the following statements
I. Acetylcholine is released at the electric synapse.
II. Electric synapse are faster
III. It is more difficult to regulate an electric synapse w.r.t. a chemical synapse

Which of the above statements are true?

1. I and II only
2. I and III only
3. II and III only
4. I, II and III
5.

Vestibular apparatus is a composed of
I. Semi-circular canals.
II. Otolith organs.
III. Organ of Corti.
IV. Crista and macula.

1. I, II, III \& IV
2. I, II only
3. IV only
4. II only
5.

In cochlea, the auditory receptors are:

1. Organ of Corti
2. Ampulla
3. Macula
4. Hair cells
5.

Consider the characters of a certain part of the human brain:
I. It contains neurosecretory cells.
II. It is an important part of the limbic system.
III. It is a part of the diencephalons.

This part of the human brain is:

1. Hypothalamus
2. Medulla oblongata
3. Cerebellum
4. Amygdala
5.

'Retinal' is present in

1. Rods.
2. Cones.
3. Both 1 and 2.
4. All the retinal layer
5.

For the given diagram which labeling and function is correctly matched/described?

1. (a) \rightarrow Fovea \rightarrow Rods are densely packed.
2. (b) \rightarrow Blindspot \rightarrow No image formed.
3. (c) \rightarrow Choroid \rightarrow Coloured part of the eye which regulates diameter of pupil.
4. (d) \rightarrow Ciliary body \rightarrow No role in accommodation
5.

Which type of reflex is represented by the following diagram when the doctor taps the knee with rubber headed hammer? Which of the following is absent in this reflex (Muscle spindle, Interneuron, Afferent pathway, Efferent pathway)?

1. Simple reflex, muscle spindle
2. knee jerk reflex, interneuron
3. Monosynaptic reflex, muscle spindle
4. Polysynaptic, interneuron
5.

Mark the part of brain where neural impulses transmitted by optic nerve are analysed and image formed on the retina is recognized based on earlier memory and experience

1. Optocoel
2. Optic lobe
3. Visual cortex area
4. Frontal lobe in occipital lobe
5.

The cell body of a neuron contains certain granular bodies involved in protein synthesis that are called

1. Perikaryon
2. Nissl's granules
3. Schwann cells
4. Glial cells

High YieldingTest Series - XIth Revision Test 6

85.

Parts A, B, C and D of the human ear are shown in the diagram. Select the option which gives incorrect identification along with its functions /characteristics

1. A : External ear
2. B : Eustachian tube
3. C : Malleus 4. D : Cochlear - impulses to the
nerve

- of transmission of sound waves

Carry sensory
Collects the vibrations in the air

Connects the middle ear cavity with the pharynx brain

Zoology - Section B

86.

Which hormone causes dilation of blood vessels, increased oxygen consumption and gluconeogenesis ?

1. ACTH
2. Insulin
3. Adrenalin
4. Glucagon
5.

Which one of the following four glands is correctly matched with the accompanying description?

1. Thyroid - hyperactivity in young children causes cretinism
2. Thymus - starts undergoing atrophy after puberty
3. Parathyroid - secrete parathormone which promotes movement of calcium ions from blood into bones during calcification
4. Pancreas - Delta cells of the Islets of Langerhans secrete a hormone which stimulates glycolysis
5.

Given below is a diagrammatic representation of vertebral column

Which of the labelled structure forms thoracic cage?

1. A
2. B
3. C
4. D
5.

Follicle-stimulating hormone interact with ?

1. Intracellular receptor
2. Cell membrane receptor
3. Direct act on gene
4. Direct act on enzyme
5.

Consider the following four statement (a-d). and select the option which includes all the correct ones only.
(a) Pineal gland is situated on the ventral side of forebrain.
(b) Corpus luteum is formed after ovulation and its formation is induced by LH.
(c) In female, oxytocin stimulates contraction of uterus at the time of childbirth and milk ejection from mammary body.
(d) Pituitary gland is located in a bony cavity called sella turcica

1. Statements (a), (b) and (d)
2. Statements (b) or (d)
3. Statement (a), (c) and (d)
4. Statement (b), (c) and (d)
5.

Find out the correct match for the following table.
Column-1
Column-ll
Column-lll
(i) Pituitary gland

Growth hormone
Acromegaly
(ii) Thyroid gland

Exophthalmic goitre
(iii) Pituitary gland

ADH mellitus

1. (i) only
2. (i) and (ii)
3. (i) and (iii)
4. (ii) and (iii)
5.

Find out the correct match from the following table

	Column-I	Column-II	Column- III
(i)	Heart	Atrial natriuretic factor	Decreases blood pressure
(ii)	Kidney	Erythropoietin	Formation of RBC
(iii)	Gastro- intestinal tract	Gastrin	Induces gastric secretion

1. (ii) and (iii)
2. (i) and (iii)
3. (i) and (ii)
4. (i), (ii), and (iii)
5.

Glucagon is a

1. Hypoglycemic hormone
2. Hyperglycemic hormone
3. Hypocalcemic hormone
4. Hypercalcemic hormone
5.

Unit of contraction in a muscle fiber is

1. Sarcomere
2. Muscle fiber
3. Actin
4. None
5.

The transduction of sound waves to action potentials taken place

1. Within the tectorial membrane as it is stimulated by the hair cells.
2. When hair cells are bent against the tectorial membrane causing them to depolarize and release neurotransmitter molecule that stimulate sensory neurous.
3. As the basilar membrane becomes more permeable to sodium ions and depolarizes, initiating an action potential in a sensory neurons.
4. With in the middle ear as the vibration are amplified by malleus, incus and stapes
5.

Read all statements carefully and find out how many statement's are correct ?
(a) Neural system provides an organised network of point to point connection's for a quick co-ordination.
(b) Impulse transmission across a chemical synapse is always faster than that across a electrical synapse.
(c) Cerebral aqueduct passes through the mid-brain.
(d) The hypothalamus contain centre's which control respiration and gastric secretions.

1. One
2. Two
3. Three
4. Four
5.

In chemical synapse, postsynaptic membrane receptor binds with

1. Excitatory neurotransmitter.
2. Inhibitory neurotransmitter.
3. Ca^{++}ions.
4. Both 1 and 2
5.

Go through the above sectional view of Cochlea. Identify A to E-

1. A - Scala vestibule, B - Scala media, C - Scala tympani, D - Basilar membrane, E - Reissner's membrane
2. A - Scala media, B - Scala vestibule, C - Scala tympani, D - Basilar membrane, E - Reissner's membrane
3. A - Scala tympani, B - Scala media, C - Scala vestibule, D - Basilar membrane, E - Reissner's membrane
4. A - Scala vestibule, B - Scala media, C - Scala tympani, D - Reissner's membrane, E - Basilar membrane
5.

The contraction of which of the following muscles will cause constriction of pupil in the presence of bright light?

1. Radial iris muscles
2. Circular iris muscles
3. Suspensory ligaments
4. Superior rectus
5.

Find out the incorrectly matched pair w.r.t. structure and its function as mentioned below

1. Eustachian tube - Maintains air pressure in tympanic cavity
2. Cornea - Controls amount of light entering into eyeball, called the diaphragm of eye
3. Cristae in ampulla - Detect rotational motion
4. Semicircular canals - Help in maintaining dynamic equilibrium, not in hearing

Chemistry - Section A

 101.Redox reaction among the following is -

1. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
2. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
3. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
4. $\mathrm{Zn}+2 \mathrm{AgCN} \rightarrow 2 \mathrm{Ag}+\mathrm{Zn}(\mathrm{CN})_{2}$
5.

Green chemistry means such reactions that-

1. Produce colour during reactions.
2. Reduce the use and production of hazardous chemicals.
3. Are related to the depletion of the ozone layer.
4. Study the reactions in plants.
5.

In which of the following compounds, nitrogen exhibits highest oxidation state?

1. $\mathrm{N}_{2} \mathrm{H}_{4}$
2. NH_{3}
3. $\mathrm{N}_{3} \mathrm{H}$
4. $\mathrm{NH}_{2} \mathrm{OH}$

105.

Which of the following is the most powerful oxidizing agent?

1. F_{2}
2. Cl_{2}
3. Br_{2}
4. I_{2}
5.

Equal volumes of $10 \%(\mathrm{~V} / \mathrm{V})$ of HCl is mixed with 10% (V/V) NaOH solution. If the density of pure NaOH is 1.5 times that of pure HCl then the resultant solution be-

1. Basic
2. Neutral
3. Acidic
4. Can't be predicted
5.

The standard reduction potential for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is 0.34 V . The reduction potential at $\mathrm{pH}=14$ for the above couple $\left(\mathrm{K}_{\mathrm{sp}}\left[\mathrm{Cu}(\mathrm{OH})_{2}\right]=1 \times 10^{-19}\right)$ is -

1. -0.22 V
2. +0.22 V
3. -0.34 V
4. +0.34 V
5.

The most harmful air pollutant produced by automobiles is-

1. HNO_{2}
2. NO
3. SO_{2}
4. CO
5.

Among the given oxoacids, the acid having highest K_{a} value is-
$1 \mathrm{HClO}_{3}$
$2 \mathrm{HBrO}_{3}$
$3 \mathrm{HlO}_{3}$
4 All have equal K_{a}
110.

The concentration of $\left[\mathrm{H}^{+}\right]$ion in a solution containing 0.1M HCN and 0.2 M NaCN is -
$\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\left.\mathrm{HCN}=6.2 \times 10^{-10}\right)$

1. 3.1×10^{10}
2. 6.2×10^{5}
3. 6.2×10^{-10}
4. 3.1×10^{-10}
5.

If the molar concentration of SnCl_{4} is $1.5 \times 10^{-3} \mathrm{~mol}$ L^{-1}, the concentration of chloride ions is -
$1.3 .0 \times 10^{-3}$
2. 6.0×10^{-3}
3. 0.3×10^{-3}
4. 0.6×10^{-6}
112.

Among the following, identify the species with an atom in +6 oxidation state-

1. MnO_{4}^{-}
2. $\mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}$
3. $\mathrm{NiF}_{6}{ }^{2-}$
4. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
5.

1cc $\mathrm{N}_{2} \mathrm{O}$ at STP contains -

1. $\frac{1.32}{224} \times 10^{23}$ electrons
2. $\frac{6.02}{22400} \times 10^{23}$ molecules
3. $\frac{1.8}{224} \times 10^{22}$ atoms
4. All of the above
5.

If 0.50 mole of BaCl_{2} is mixed with 0.20 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is -

1. 0.10
2. 0.20
3. 0.30
4. 0.40
5.

At STP the density of CCl_{4} vapor in g / L will be nearest to -

1. 8.67
2. 6.87
3. 3.67
4. 4.26
5.

The weight of 1×10^{23} molecules of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is -

1. 34.42 g
2. 41.42 g
3. 54.44 g
4. 68.94 g
5.

The volume of carbon dioxide gas evolved at STP by heating 7.3 g of $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ will be -

1. 1000 mL
2. 1120 mL
3. 2230 mL
4. 3240 mL
5.

The volume of CO_{2} released at STP on heating 9.85 g of BaCO_{3} on complete decomposition (atomic mass, $\mathrm{Ba}=137$) will be -

1. 1.12 L
2. 4.84 L
3. 2.12 L
4. 2.06 L
5.

The ratio of $\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}$ for the reaction
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$ is-

1. $(\mathrm{RT})^{1 / 2}$
2. $(\mathrm{RT})^{-1 / 2}$
3. RT
4. 1
5.

Among the following pairs, the pair that represents a buffer solution is-

1. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
2. HCl and KCl
3. HNO_{2} and NaNO_{2}
4. NaOH and NaCl
5.

The pH of 0.1 M solution of the following salts increases in the order of -

1. $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
2. $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
3. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
4. $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
5.

An amphiprotic (can accept and give proton) ion is-

1. HPO_{3}^{-}
2. $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
3. $\mathrm{H}_{3} \mathrm{PO}_{4}$
4. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
5.

The oxidation state of sodium in sodium amalgam is -

1. -1
2. +1
3. +2
4. 0
5.

One mole of carbon atom weighs 12 g , the number of atoms in it is equal to -

1. 1.2×10^{23}
2. 6.022×10^{22}
3. 1.2×10^{22}
4. 6.022×10^{23}
5.

The oxidation state of two S-atoms in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is -

1. +2 and +4
2. +3 and -2
3. +4 and -2
4. +6 and -2
5.

Given the reaction $2 \mathrm{HI}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2}(\mathrm{~g})$
A sample of $\mathrm{HI}_{(\mathrm{g})}$ is placed in a flask at a pressure of 0.2 atm. At equilibrium, the partial pressure of $\mathrm{HI}_{(\mathrm{g})}$ is 0.04 atm. The K_{P} for the given equilibrium would be -

1. 2.0
2. 3.5
3. 4.0
4. 2.6
5.

Among the following, the mixture will produce a buffer solution when mixed in equal volumes is-

1. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
2. $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
3. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
4. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COONa}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
5.

The value of pH of $0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ $\left(\mathrm{K}_{\mathrm{a}}=1.74 \times 10^{-5}\right)$ is-

1. 3.4
2. 3.6
3. 3.9
4. 3.0
5.

K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} and K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}. The pH of ammonium acetate will be -

1. 7.005
2. 4.75
3. 7.0
4. Between 6 and 7
5.

At 500 K , equilibrium constant, K_{C}, for the following reaction is 5 .

$$
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HI}(\mathrm{~g})
$$

What would be the equilibrium constant K_{C} for the reaction?
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

1. 0.04
2. 0.4
3. 25
4. 2.5
5.

Addition of small amount of argon at constant volume will not affect the equilibrium among the following-

1. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
2. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
3. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
4. The equilibrium will remain unaffected in all the three cases

132.

Burning a small sample of welding gas (constituted of C and H only) in oxygen gives 3.38 g carbon dioxide, 0.690 g of water, and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g . Molecular formula of welding gas would be -

1. $\mathrm{C}_{2} \mathrm{H}_{2}$
2. $\mathrm{C}_{2} \mathrm{H}_{6}$
3. CH
4. $\mathrm{C}_{2} \mathrm{H}_{4}$
5.

Given a galvanic cell with the following reaction
$\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Zn}^{+2}{ }_{(\mathrm{aq})}+\mathrm{Ag}_{(\mathrm{s})}$
The negatively charged electrode will be-

1. Zn
2. Ag
3. Both
4. None of the above
5.

In the reaction $\mathrm{Al}+\mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$, The total number of electrons transferred are -

1. 6
2. 8
3. $8 / 3$
4. 24
5.

The wrong statement about photochemical smog is-

1. Photochemical smog causes irritation in eyes.
2. It has a low concentration of oxidizing agents
3. It can be controlled by controlling the release of NO_{2}, hydrocarbon, ozone, etc.
4. Plantation of some plants helps in controlling photochemical smog.

Chemistry - Section B

136.

A gas that is not common component of photochemical smog is-

1. Ozone
2. Acrolein
3. Peroxyacetyl nitrate
4. Chlorofluorocarbons
5.

The phenomenon in which atmospheric gases trap the heat radiations from the sun, near the earth's surface and keeps it warm is known as-

1. Natural greenhouse effect
2. Tyndall effect
3. Heating effect
4. Joule's effect
5.

The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is-

1. -1
2. +1
3. +2
4. +3
5.

B.O.D is connected with-

1. Organic matter
2. Microbes
3. Both (1) and (2)
4. None of the above.
5.

Ozone depletion occurs in :

1. Tropospheric pollution.
2. Stratospheric pollution.
3. Air pollution.
4. Photochemical smog.
5.

Major component of acid rain is :

1. HNO_{3}
2. $\mathrm{H}_{2} \mathrm{SO}_{4}$
3. HCl
4. $\mathrm{H}_{2} \mathrm{CO}_{3}$
5.

Smog is essentially caused by the presence of -

1. $\mathrm{O}_{2}, \mathrm{O}_{3}$
2. $\mathrm{O}_{2}, \mathrm{~N}_{2}$
3. Oxide of N and S
4. $\mathrm{O}_{3}, \mathrm{~N}_{2}$
5.

When 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (ionization constant $\mathrm{K}_{\mathrm{b}}=5 \times 10^{-4}$) is mixed with 0.08 mol HCl and the volume is made up of 1 litre. The $\left[\mathrm{H}^{+}\right]$of resulting solution is -

1. 8×10^{-2}
2. 2×10^{-11}
3. 1.23×10^{-4}
4. 8×10^{-11}
5.

Among the following solutions, the solution will have a pH value close to 1.0 is-

1. 100 ml of $(\mathrm{M} / 10) \mathrm{HCl}+100 \mathrm{ml}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
2. 55 ml of $(\mathrm{M} / 10) \mathrm{HCl}+45 \mathrm{ml}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
3. 10 ml of $(\mathrm{M} / 10) \mathrm{HCl}+90 \mathrm{ml}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
4. 85 ml of $(\mathrm{M} / 10) \mathrm{HCl}+15 \mathrm{ml}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
5.

The pH of $0.01 \mathrm{M} \mathrm{NaOH} \mathrm{(aq)} \mathrm{solution} \mathrm{will} \mathrm{be-}$

1. 7.01
2. 2
3. 12
4. 9
5.

The value of $\Delta \mathrm{n}$ for the following reaction will be -
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

1. 1
2. 0.5
3. 1.5
4. 2
5.

$\begin{aligned} & \text { For } \\ & \mathrm{FeO}_{(\mathrm{s})}\end{aligned}+\mathrm{CO}_{(\mathrm{g})} \rightleftharpoons \mathrm{Fe}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}, \mathrm{K}_{\mathrm{p}} \stackrel{\text { reaction: }}{=} 0.265$ at 1050 K . If the initial partial pressures are: $\mathrm{p}_{\mathrm{CO}}=1.4$ atm and $\mathrm{p}_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$, the partial pressure of CO_{2} at equilibrium at 1050 K would be -

1. 4.61 atm
2. 1.74 atm
3. 0.46 atm
4. 0.17 atm
5.

Soil erosion can be prevented by -

1. Overgrazing
2. Removal of vegetation
3. Afforestation (Plantation)
4. Increasing bird population
5.

4 gm of NaOH is dissolved in 1000 ml of water. The H^{+} ion concentration will be -

1. $10^{-1} \mathrm{M}$
2. $10^{-13} \mathrm{M}$
3. $10^{-4} \mathrm{M}$
4. $10^{-10} \mathrm{M}$
5.

The reaction quotient (Q) for the reaction :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
is given by $\mathrm{Q}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$. The reaction will proceed
from right to left if :

1. $\mathrm{Q}=\mathrm{K}_{\mathrm{C}}$
2. $\mathrm{Q}<\mathrm{K}_{\mathrm{C}}$
3. $\mathrm{Q}>\mathrm{K}_{\mathrm{C}}$
4. $\mathrm{Q}=0$
(where K_{C} is the equilibrium constant)

Physics - Section A

151.

The pressure at the bottom of a tank of water is 3P, where P is atmospheric pressure. If the water is drawn out until the level of water is lowered by one fifth, then the pressure at the bottom of the tank is :

1. 2 P
2. $13 \mathrm{P} / 5$
3. $8 \mathrm{P} / 5$
4. $4 \mathrm{P} / 5$
5.

Three masses are placed on the x-axis: 300 g at origin, 500 g at $\mathrm{x}=40 \mathrm{~cm}$ and 400 g at $\mathrm{x}=70 \mathrm{~cm}$. The distance of the center of mass from the origin is:

1. 40 cm
2. 45 cm
3. 50 cm
4. 30 cm

153.

The coefficient of viscosity η of a liquid is defined as the tangential force on a layer in that liquid per unit area per unit velocity gradient across it. Then a sphere of radius ' a ', moving through it under viscous force F attains a constant velocity 'v' given by - (where K is a numerical constant)

1. $K F a \eta$
2. $K \frac{F}{a} \eta$
3. $K \frac{F}{a \eta}$
4. $K \eta \frac{a}{F}$
5.

A capillary tube of radius 0.20 mm is dipped vertically in the water. The height of the water column raised in the tube will be (surface tension of water $=0.075 \mathrm{~N} / \mathrm{m}$ and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$. Taking $\mathrm{g}=10 \mathrm{~m} / s^{2}$ and contact angle 0°).

1. 7.5 cm .
2. 6 cm
3.5 cm
3. 3 cm
4.

A body of mass 2 kg moving with a velocity $(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \widehat{\mathrm{k}}) \mathrm{ms}^{-1}$ collides with another body of mass 3 kg moving with a velocity $(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\widehat{\mathrm{k}}) \mathrm{ms}^{-1}$. If they stick together, the velocity in ms^{-1} of the composite body is :

1. $\frac{1}{5}(8 \hat{i}+7 \hat{j}-3 \hat{k})$
2. $\frac{1}{5}(-4 \hat{i}+\hat{j}-3 \hat{k})$
3. $\frac{1}{5}(8 \hat{i}+\hat{\mathrm{j}}-\widehat{\mathrm{k}})$
4. $\frac{1}{5}(-4 \hat{i}+7 \hat{j}-3 \hat{k})$
5.

A body of density $0.7 \mathrm{gm} / \mathrm{cm}^{3}$ floats on a lake of water. The fraction of the body which is outside water is-

1. 30%
2. 70%
3. 25%
4. 50%
5.

A couple produces:

1. Purely linear motion
2. Purely rotational motion
3. Linear and rotational motion
4. No motion
5.

A body having initial kinetic energy 2 J collides with the identical body at rest. The maximum loss of kinetic energy in the collision is-

1. 2 J
2. Zero
3. 1 J
4. 1.5 J
5.

Three masses $\mathrm{m}, 2 \mathrm{~m}$, and 3 m are thrown from the top of a tower such that m is thrown vertically upward with $10 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m}$ is thrown horizontally with $15 \mathrm{~m} / \mathrm{s}$ and 3 m is thrown vertically downward with $5 \mathrm{~m} / \mathrm{s}$. The acceleration of centre of mass of the three-body system will be-

1. $2 \sqrt{2} g$
2. g
3. $\sqrt{2} g$
4. Zero
5.

The moment of inertia of a uniform disc of mass M and radius R about an axis passing through its edge and perpendicular to its plane is l. Its moment of inertia about its diameter will be:

1. 1
2. $\frac{\mathrm{I}}{2}$
3. $\frac{\mathrm{I}}{4}$
4. $\frac{\mathrm{I}}{6}$
5.

A solid sphere is rolling without slipping such that velocity of its centre of mass is v . Ratio of speed of points A \& B at horizontal extremes is-

1. $1: 1$
2. $\sqrt{2}: 1$
3. $2: 1$
4. $1: \sqrt{2}$
5.

Centre of mass of a system of particles

1. Depends on frame of reference
2. Does not depend on frame of reference
3. May change due to internal forces
4. All of these
5.

Five particles of mass 2 kg each are attached to the circumference of a circular disc of the radius of 0.1 m and negligible mass. Moment of inertia of the system about the axis passing through the centre of disc and perpendicular to its plane is:

1. $1 \mathrm{~kg}-\mathrm{m}^{2}$
2. $0.1 \mathrm{~kg}-\mathrm{m}^{2}$
3. $2 \mathrm{~kg}-\mathrm{m}^{2}$
4. $0.2 \mathrm{~kg}-\mathrm{m}^{2}$
5.

A mass of 2 kg is moving on a circular path of the radius of 2 m with 30 revolutions per minute. The kinetic energy of the mass (in joule) is:

1. π^{2}
2. $2 \pi^{2}$
3. $4 \pi^{2}$
4. $8 \pi^{2}$
5.

On a rough horizontal surface(coefficient of friction μ), a cubical block of side 'a' and mass m is projected horizontally. The torque on the block about its centre of mass till the block stops is equal to:

1. zero
2. $\frac{1}{2} \mu m g a$
3. $\mu \mathrm{mga}$
4. mga
5.

A rigid body is rolling without slipping. If the ratio of translational kinetic energy and rotational kinetic energy is $2: 1$, the body maybe

1. A solid sphere
2. A ring
3. A hollow cylinder
4. A solid cylinder
5.

The surface tension of the soap solution is $2 \times 10^{-2} \mathrm{~N} / \mathrm{m}$. If a soap bubble of radii 4 cm is blown, then the amount of work done is:

1. $4 \pi \times 10^{-6} \mathrm{~J}$
2. $2.56 \pi \times 10^{-4} \mathrm{~J}$
3. $16 \pi \times 10^{-5} \mathrm{~J}$
4. $16 \pi \times 10^{-6} \mathrm{~J}$
5.

A block weighs 5 N in air, 4.5 N in a liquid of specific gravity 0.5 . Its weight in water will be:

1. 3.5 N
2. 4.0 N
3. 2.5 N
4. 3.0 N
5.

A liquid is poured in three vessels of the same base area to equal heights as shown in the figure, then:

1. Maximum force on the base will be for vessel C
2. Maximum force on the base will be for vessel B
3. Maximum force on the base will be for vessel A
4. Force on the base will be equal for all the vessels
5.

The radius of an air bubble is double that of another. The ratio of the excess pressure in the bubbles will be

1. 1: $\sqrt{2}$
2. 1: 2

171.

Liquid disturbed by stirring comes to rest after some time due to:

1. Surface tension
2. Viscosity
3. Buoyancy
4. Stability
5.

When a large liquid drop breaks into several smaller liquid drops, then the temperature of smaller drops is relatively:

1. Same
2. More
3. Less
4. Maybe less or more
5.

The work done to break a spherical drop of radius R into n drops of equal size is equal to:

1. $\frac{4 \pi \mathrm{R}^{2} \mathrm{~T}}{\mathrm{n}^{2 / 3}-1}$
2. $\left(\frac{1}{\mathrm{n}^{1 / 3}}-1\right) 4 \pi \mathrm{R}^{2} \mathrm{~T}$
3. $\left(\mathrm{n}^{1 / 3}-1\right) 4 \pi \mathrm{R}^{2} \mathrm{~T}$
4. $\left(\mathrm{n}^{4 / 3}-1\right) 4 \pi \mathrm{R}^{2} \mathrm{~T}$
5.

A ring and a disc have the same mass and roll without slipping with the same linear velocity v . If the total kinetic energy of the ring is 8 J , the total kinetic energy of disc is:-

1. 8 J
2. 6 J
3. 16 J
4. 4 J
5. 1: 4
6. 1: 8

175.

Two discs, each having moment of inertia $5 \mathrm{~kg}-\mathrm{m}^{2}$ about their central axis, rotating with speed $10 \mathrm{rad} \mathrm{s}^{-1}$ and 20 $\mathrm{rad} \mathrm{s}{ }^{-2}$ in the same direction, are brought in contact face to face with their axes of rotation coinciding. The loss of kinetic energy in the process is:-

1. 2 J
2. 5 J
3. 125 J
4. 0 J
5.

A particle is moving with a constant velocity along a line parallel to positive X -axis. The magnitude of its angular momentum with respect to the origin is

1. zero
2. increasing with x
3. decreasing with x
4. remaining constant
5.

A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes,

1. L
2. L/2
3. 2 L
4. $\mathrm{L} / \sqrt{2}$
5.

A small sphere of radius 2 cm falls from rest in a viscous liquid. Heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to-

1. 2^{2}
2. 2^{3}
3. 2^{4}
4. 2^{5}
5.

With an increase in temperature, the viscosity of liquid and gas, respectively will:

1. increase and increase
2. increase and decrease
3. decrease and increase
4. decrease and decrease
5. 120 kg
6. 200 kg
7. 40 kg
8. 80 kg

182.

In a horizontal pipe of non-uniform cross section, water flows with a velocity of $1 \mathrm{~m} \mathrm{~s}^{-1}$ at a point where the diameter of the pipe is 20 cm . The velocity of water $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ at a point where the diameter of the pipe is 5 cm is-

1. 8
2. 16
3. 24
4. 32
5.

A rod is standing vertically on a smooth surface, if the rod is slightly disturbed and it falls towards the right, then

1. The center of mass moves vertically downward
2. The center of mass moves towards the right
3. The center of mass moves towards the left
4. The center of mass does not move
5.

Figure shows a container filled with a liquid of density ρ. Four points A, B, C and D lie on the diametrically opposite points of a circle as shown. Points A and C lie on vertical line and points B and D lie on horizontal line. The incorrect statement is $\left(\mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}}, \mathrm{p}_{\mathrm{C}}, \mathrm{p}_{\mathrm{D}}\right.$ are absolute pressure at the respective points)

1. $\mathrm{p}_{\mathrm{D}}=\mathrm{p}_{\mathrm{B}}$
2. $\mathrm{p}_{\mathrm{A}}<\mathrm{p}_{\mathrm{B}}=\mathrm{p}_{\mathrm{D}}<\mathrm{p}_{\mathrm{C}}$
3. $\mathrm{p}_{\mathrm{D}}=\mathrm{p}_{\mathrm{B}}=\frac{\mathrm{p}_{\mathrm{C}}-\mathrm{p}_{\mathrm{A}}}{2}$
4. $\mathrm{p}_{\mathrm{D}}=\mathrm{p}_{\mathrm{B}}=\frac{\mathrm{p}_{\mathrm{C}}+\mathrm{p}_{\mathrm{A}}}{2}$
5.

In a hydraulic jack as shown, the mass of the car, $\mathrm{W}=800$ $\mathrm{kg}, \mathrm{A}_{1}=10 \mathrm{~cm}^{2}, \mathrm{~A}_{2}=10 \mathrm{~m}^{2}$. The minimum force F required to lift the car is:

1. 1 N
2. 0.8 N
3. 8 N
4. 16 N

Physics - Section B

186.

A particle of mass 2 kg located at the position $(\hat{i}+\hat{j}) \mathrm{m}$ has a velocity of $2(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \mathrm{m} / \mathrm{s}$. Its angular momentum about z -axis in $\mathrm{kg}-\mathrm{m}^{2} / \mathrm{s}$ is :

1. Zero
2. +8
3. 12
4. -8
5.

The linear speed of a uniform spherical shell after rolling down an inclined plane of vertical height h from rest is:

1. $\sqrt{\frac{10 \mathrm{gh}}{7}}$
2. $\sqrt{\frac{4 \mathrm{gh}}{5}}$
3. $\sqrt{\frac{6 \mathrm{gh}}{5}}$
4. $\sqrt{2 \mathrm{gh}}$
5.

A raindrop of radius r has a terminal velocity $\mathrm{v} \mathrm{m} / \mathrm{s}$ in air. The viscosity of air is η poise. The viscous force on it is F. If the radius of the drop be 2 r and the drop falls with terminal velocity in the same air, the viscous force on it will be:

1. F
2. F/2
3. 4 F
4. 8 F
5.

A sphere rolls down without slipping on an inclined plane from a point at vertical height h. The speed of the centre of mass of the sphere when it reaches the bottom is:

1. $\sqrt{\frac{10 \mathrm{gh}}{3}}$
2. $\sqrt{\frac{10 \mathrm{gh}}{7}}$
3. $\sqrt{\frac{7 \mathrm{gh}}{4}}$
4. $\sqrt{\frac{5 \mathrm{gh}}{7}}$
5.

A child is standing on the edge of a merry-go-round that has the shape of a disk as shown in the figure. The mass of the child is 40 kilograms. The merry-go-round has a mass of 200 kilograms and a radius of 2.5 meters, and it is rotating with an angular velocity of $\omega=2.0$ radians per second. The child then walks slowly towards the center of the merry-go-round. When the child reaches the center, what is the angular velocity of the disc? (The size of the child can be neglected.)

1. $2.0 \mathrm{rad} / \mathrm{s}$
2. $2.2 \mathrm{rad} / \mathrm{s}$
3. $2.4 \mathrm{rad} / \mathrm{s}$
4. $2.8 \mathrm{rad} / \mathrm{s}$
5.

A rigid body rotates about a fixed axis with a variable angular velocity equal to $\alpha-\beta t$, at the time t , where α, β are constants. The angle through which it rotates before its stops

1. $\frac{\alpha^{2}}{2 \beta}$
2. $\frac{\alpha^{2}-\beta^{2}}{2 \alpha}$
3. $\frac{\alpha^{2}-\beta^{2}}{2 \beta}$
4. $\frac{(\alpha-\beta) \alpha}{2}$
5.

A solid sphere of mass m and radius R is released from the top of an inclined plane such that it rolls down without slipping. If the coefficient of friction is μ and the angle of inclination is θ with the horizontal, then the force of friction acting on the body is:

1. $\mu \mathrm{mgcos} \theta$
2. $\mathrm{mg} \sin \theta$
3. $\frac{\mathrm{mg} \sin \theta}{3}$
4. $\frac{2 \mathrm{mgsin} \theta}{7}$
5.

A ring of mass M and radius R is rolling with angular speed ω on a horizontal plane as shown in the figure. The magnitude of angular momentum of the ring about origin O is:

1. $M R^{2} \omega$
2. $2 M R^{2} \omega$
3. $\frac{2}{5} M R^{2} \omega$
4. $\frac{5}{2} M R^{2} \omega$
5.

A disc of mass M and radius R starts falling down as shown in the figure. The string unwinds without slipping on the disc. The instantaneous power developed by the tension is:

1. $\mathrm{T} \times R \omega$
2. $\frac{T \times R \omega}{2}$
3. $2 \mathrm{~T} \times R \omega$
4. Zero
5.

A thin uniform rod has moment of inertia l about an axis parallel to its length at a certain distance. If on heating, its length increases by 2%, then moment of inertia of rod will change by

1. 0%
2.1\%
2. $\frac{1}{2} \%$
3. 4%

196.

Moment of inertia I of a non-uniform ring of mass M and radius R about an axis through the centre and normal to its plane is:

1. $I>M R^{2}$
2. $I<M R^{2}$
3. $I=M R^{2}$
4. $I \leq M R^{2}$

High Yielding Test Series - XIth Revision Test 6

197.

A uniform rod having length l is hinged at one end and is free to rotate in the vertical plane. The rod is released from the position making an angle θ with the vertical. The acceleration of the free end of the rod at the instant it is released is:

1. $\frac{3 g \sin \theta}{4}$
2. $\frac{3 \mathrm{~g} \cos \theta}{2}$
3. $\frac{3 g \sin \theta}{2}$
4. $\frac{3 \mathrm{~g} \cos \theta}{4}$
5.

The coefficient of friction between a solid cylinder and a rough inclined plane is just sufficient for the pure rolling of the cylinder. Which of the following bodies can move with pure rolling on the inclined plained?
199.

A disc is performing pure rolling with constant angular velocity on a smooth stationary surface. Then at any instant, for point of contact P of the disc-

1. Velocity is v , acceleration is zero
2. Velocity is zero, acceleration is $\frac{v^{2}}{R}$
3. Velocity is zero, acceleration is zero
4. Velocity is v , acceleration is $\frac{v^{2}}{R}$
5.

There is an orifice at some depth of the water tank. Absolute pressure at the level of the orifice in the water tank is 4 atmospheric pressure. The density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and 1 atm pressure $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The speed of water coming out of the orifice is:

1. $10 \mathrm{~m} / \mathrm{s}$
2. $20 \mathrm{~m} / \mathrm{s}$
3. $10 \sqrt{6} \mathrm{~m} / \mathrm{s}$
4. $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$
5. Hollow cylinder
6. Solid sphere
7. Hollow sphere
8. Ring

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep
course

