Physics - Section A

1. The refractive index of a material of a plano-concave lens is $5 / 3$, and the radius of curvature is 0.3 m . The focal length of the lens in air is:
2. -0.45 m
3. -0.6 m
4. -0.75 m
5. -1.0 m
6. The far point of a short-sighted eye is 200 cm . The power of the corrective lens is:
7. -0.5 D
8. 2 D
9. 1 D
10. -1.5 D
11. The refractive index of glass is 1.9. If light travels through a glass slab of thickness d in time t and takes the same time to travel through a transparent beaker filled with water upto a thickness 1.5 d , then the refractive index of water is:
12. 1.27
13. 1.33
14. 1.20
15. 1.50
16. Two electric bulbs, one of $200 \mathrm{~V}-40 \mathrm{~W}$ and the other of $200 \mathrm{~V}-100 \mathrm{~W}$ are connected in a domestic circuit. Then:
17. they have equal currents through them.
18. the resistances of both the bulbs are same.
19. the resistance of the bulb of 40 watt is more.
20. the resistance of the bulb of 100 watt is more.
21. A house is served by 220 V supply line. In a circuit protected by a fuse marked by 9 amp , the maximum number of $60-\mathrm{W}$ lamps in parallel that can be turned on, is:
22. 44
23. 20
24. 22
25. 33
26. X is a battery of emf 6 V and internal resistance 1 ohm. The potential at point P in the figure is:

27. 6 V
28. 5 V
29. 3 V
30. 2 V
31. Two charged particles are projected into a region in which a magnetic field is perpendicular to their velocities. After they enter the magnetic field, it must be true that:
32. the charges are deflected in opposite directions
33. the charges continue to move in a straight line
34. the charges move in circular paths
35. the charges move in circular paths but in opposite directions
36. An electron moves in a circular orbit with a uniform speed v. It produces a magnetic field B at the centre of the circle. If velocity is increased to 4 v and the magnetic field at the center remains unchanged, the radius changes to:
$($ Take Initial radius $=r)$
37. $\mathrm{r} / 2$
38. $\mathrm{r} / 3$
39. 2 r
40. 3 r
41. A photon with energy E has same energy as kinetic energy of a proton. Let λ_{1} be the de-Broglie wavelength of the proton and λ_{2} be the wavelength of the photon. The ratio $\lambda_{1} / \lambda_{2}$ is proportional to:
42. c^{0}
43. $c^{1 / 2}$
44. c^{-1}
45. c^{-2}
46. The threshold frequency for a certain metal is ν_{0}. When the light of frequency $\nu=2 \nu_{0}$ is incident on it, the maximum velocity of photoelectrons is $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. If the frequency of incident radiation is increased to $5 \nu_{0}$ then the maximum velocity of photoelectrons (in m / s) will be:
47. $(4 / 5) \times 10^{6}$
48. 2×10^{6}
49. 8×10^{6}
50. 2×10^{7}
51. Representing the stopping potential V along y -axis and $(1 / \lambda)$ along x-axis for a given photocathode, the curve is a straight line, the slope of which is equal to:
52. $\frac{e}{h c}$
53. $\frac{h c}{e}$
54. $\frac{e c}{h}$
55. $\frac{h e}{c}$
56. Thermal neutrons are those which:
57. are at very high temperatures.
58. move with high velocities.
59. have kinetic energies similar to those of surrounding molecules.
60. are at rest.
61. An element has binding energy $8 \mathrm{eV} /$ nucleon. If it has total binding energy 128 eV , then the number of nucleons are:
62. 8
63. 14
64. 16
65. 32
66. If R_{1} is the input resistance and R_{2} is the output resistance, the voltage gain A in common-emitter configuration is:
67. $A=\alpha\left(R_{2} / R_{1}\right)$
68. $A=\beta\left(R_{2} / R_{1}\right)$
69. $A=\alpha$
70. $A=\beta$
71. For the given circuit, the potential difference between C and D is:

72. 0
73. 5 volt
74. 10 volt
75. 15 volt
76. In the case of $p-n$ junction diode at a high value of reverse bias, the current rises sharply. The value of reverse
bias is known as:
77. zero voltage
78. zener voltage
79. inverse voltage
80. critical voltage
81. A mass is suspended from a vertical string in the cabin of a lift moving uniformly upwards, then tension in the string is:
82. $\mathrm{T}=\mathrm{T}_{0}$
83. $\mathrm{T}>\mathrm{T}_{0}$
84. $\mathrm{T}<\mathrm{T}_{0}$
85. $\mathrm{T}=2 \mathrm{~T}_{0}$
(where T_{0} is the tension in the string when the lift is in rest position)
86. A bullet is fired from a gun. The force on the bullet is given by:
$F=600-2 \times 10^{5} t$
Where F is in newton and t in second. The force on the bullet becomes zero as soon as it leaves the barrel. What is the average impulse imparted to the bullet?
87. $9 \mathrm{~N}-\mathrm{s}$
88. zero
89. $0.9 \mathrm{~N}-\mathrm{s}$
90. $1.8 \mathrm{~N}-\mathrm{s}$
91. If the kinetic energy of a particle is doubled, the deBroglie wavelength becomes:
92. 2 times
93. 4 times
94. $\sqrt{2}$ times
95. $(1 / \sqrt{2})$ times
96. Force on an object constrained to move along Zdirection is given by:
$\overrightarrow{\mathbf{F}}=(5 \hat{i}+10 \hat{j}-6 \hat{k}) N$
The work done by this force in moving the body a distance of 8 m along the z -axis is:
97. 24 J
98. -24 J
99. 48 J
100. -48 J
101. A body of mass 5 kg falls from a height of 20 m on the ground and it rebounds to a height of 0.2 m . If the loss in potential energy is used up by the body, then what will be the temperature rise? (Specific heat of the material $=0.09$ cal $\mathrm{gm}^{-1}{ }^{\mathrm{o}} \mathrm{C}^{-1}$)
102. $5^{\circ} \mathrm{C}$
103. $4^{\mathrm{o}} \mathrm{C}$
104. $8^{\circ} \mathrm{C}$
105. none of these.
106. Two particles of equal masses have velocities $\vec{v}_{1}=2 \hat{i} \mathrm{~m} / \mathrm{s}$ and $\vec{v}_{2}=2 \hat{j} \mathrm{~m} / \mathrm{s}$. The first particle has an acceleration $\vec{a}=(3 \hat{i}+3 \hat{j}) m / s^{2}$, while the acceleration of the other particle is zero. The centre of mass of the two particles moves in a:
107. circle
108. parabola
109. straight line
110. ellipse
111. A closed tube partly filled with water lies in a horizontal plane. The tube rotates about a perpendicular bisector with angular velocity ω. If the tube stops rotating, the moment of inertia of the system:
112. increases.
113. decreases.
114. remains constant.
115. depends on the sense of rotation.
116. A uniform sphere of mass 200 gm rolls without slipping on a plane surface so that its centre moves at a speed of $2.00 \mathrm{~cm} / \mathrm{sec}$. Its kinetic energy is:
117. $5.6 \times 10^{-5} \mathrm{~J}$
118. $5.6 \times 10^{-4} J$
119. $5.6 \times 10^{-3} J$
120. $5.6 \times 10^{-2} J$
121. A disc and a hoop (ring) of the same mass and size roll down an inclined plane simultaneously. The object which reaches the bottom of the incline first is:
122. hoop
123. disc
124. both the hoop and the disc
125. none of these
126. The surface tension of the soap solution is $0.03 \mathrm{~N} / \mathrm{m}$. The work done in blowing to form a soap bubble of surface area $40 \mathrm{~cm}^{2}$ is:
127. $1.2 \times 10^{-4} \mathrm{~J}$
128. $2.4 \times 10^{-4} \mathrm{~J}$
129. $12 \times 10^{-4} J$
130. $24 \times 10^{-4} J$
131. Two substances of relative densities ρ_{1} and ρ_{2} are mixed in equal volume and relative density of mixture is 4. When they are mixed in equal masses, the relative density of mixture is 3 . The values of ρ_{1} and ρ_{2} are:
132. $\rho_{1}=6$ and $\rho_{2}=2$
133. $\rho_{1}=3$ and $\rho_{2}=5$
134. $\rho_{1}=12$ and $\rho_{2}=4$
135. none of these
136. For the cyclic process shown , the work done is:

137. Negative
138. Positive
139. Zero
140. Can't say
141. In an adiabatic process wherein pressure is increased by $\frac{2}{3} \%$ if $\frac{C_{p}}{C_{v}}=\frac{3}{2}$, then the volume decreases by about:
142. $\frac{4}{9} \%$
143. $\frac{2}{3} \%$
144. 4%
145. $\frac{9}{4} \%$
146. Six moles of O_{2} gas is heated from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ at constant volume. If specific heat capacity at constant pressure is $8 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$. What is the change in the internal energy of the gas?[Take $\mathrm{R}=2 \mathrm{cal} / \mathrm{mol}-\mathrm{K}]$
147. 180 cal
148. 300 cal
149. 360 cal
150. 540 cal
151. Internal energy of n_{1} moles of hydrogen at temperature T is equal to the internal energy of n_{2} mole of helium at temperature $2 T$. Then the ratio n_{1} / n_{2} is:
152. $3 / 5$
153. $2 / 3$
154. $6 / 5$
155. $3 / 7$
156. A particle of mass m oscillates in simple harmonic motion between points X_{1} and X_{2}, the equilibrium position being O . Its kinetic energy will be as shown in the following graph:

157. If a particle takes 0.5 sec to reach position of minimum velocity from previous such position, then:
158. $\mathrm{T}=6 \mathrm{sec}, \mathrm{v}=1 / 6 \mathrm{~Hz}$
159. $\mathrm{T}=2 \mathrm{sec}, \mathrm{v}=1 \mathrm{~Hz}$
160. $\mathrm{T}=3 \mathrm{sec}, \mathrm{v}=3 \mathrm{~Hz}$
161. $T=1 \mathrm{sec}, \mathrm{v}=1 \mathrm{~Hz}$
162. A simple pendulum is made of a body which is a hollow sphere containing mercury suspended by means of a wire. If a little mercury is drained off, the period of the pendulum will:
163. remain unchanged
164. increase
165. decrease
166. become erratic
167. Two concentric coils of 10 turns each are situated in the same plane. Their radii are 20 and 40 cm and they carry respectively 0.2 and 0.3 ampere current in opposite direction. The magnetic field in $\mathrm{Wb} / \mathrm{m}^{2}$ at the centre is:
168. $\frac{35}{4} \mu_{0}$
169. $\frac{\mu_{0}}{80}$
170. $\frac{7}{80} \mu_{0}$
171. $\frac{5}{4} \mu_{0}$

Physics - Section B

36. When a hydrogen atom is raised from the ground state to the fifth state, then:
37. both K.E. and P.E. increase
38. both K.E. and P.E. decrease
39. the P.E. increases and K.E. decreases
40. the P.E. decreases and K.E. increases
41. In the interference pattern, the energy is:
42. created at the position of maxima.
43. destroyed at the position of minima.
44. conserved but redistributed.
45. all of the above.
46. Two point charges $+3 \mu C$ and $+8 \mu C$ repel each other with a force of 40 N . If a charge of $-5 \mu C$ is added to each of them then the force between them will become:
47. +10 N
48. +20 N
49. -20 N
50. -10 N
51. The magnetic lines of force inside a bar magnet:
52. do not exist
53. are from N -pole to S-pole of the magnet
54. are from S-pole to N -pole of the magnet
55. depend upon the area of cross-section of the bar magnet
56. Energy stored in the choke coil in the form of:
57. heat
58. electric energy
59. magnetic energy
60. chemical energy
61. In a purely resistive AC circuit, which of the following sketches represents the variation of the current amplitude I_{0} with the frequency ω ?

62. A plane EM wave of frequency 30 MHz travels in free space along the X-direction. The electric field component of the wave at a particular point of space and time is $E=6$ V / m along Y-direction. Its magnetic field component B at this point would be:
63. $2 \times 10^{-8} \mathrm{~T}$ along Z-direction
64. $6 \times 10^{-6} \mathrm{~T}$ along X-direction
65. $6 \times 10^{-8} \mathrm{~T}$ along Y-direction
66. $6 \times 10^{-8} \mathrm{~T}$ along Z-direction
67. Given that T stands for time period and l stands for the length of simple pendulum. If g is the acceleration due to gravity, then which of the following statements about the relation $T^{2}=l / g$ is correct?
68. It is correct both dimensionally as well as numerically.
69. It is neither dimensionally correct nor numerically.
70. It is dimensionally correct but not numerically.
71. It is numerically correct but not dimensionally.
72. Depict the shown v-x graph in the a-x graph:

73. The friction of the air causes vertical retardation equal to 10% of the acceleration due to gravity. The maximum height will be decreased by: (Take $g=10 \mathrm{~ms}^{-2}$)
74. 8\%
75. 9%
76. 10%
77. 11\%
78. At what height h above the earth, the value of g becomes $\mathrm{g} / 2$? ($\mathrm{R}=$ Radius of the earth)
79. 3R
80. $\sqrt{2} R$
81. $(\sqrt{2}-1) R$
82. $\frac{1}{\sqrt{2}} R$
83. One end of a uniform bar of weight W_{1} is suspended from the roof and a weight W_{2} is suspended from the other end. The area of cross-section is A . What is the stress at the midpoint of the rod?
84. $\frac{\left(W_{1}+W_{2}\right)}{A}$
85. $\frac{\left(W_{1}-W_{2}\right)}{A}$
86. $\frac{\left(W_{1} / 2\right)+W_{2}}{A}$
87. $\frac{\left(W_{2} / 2\right)+W_{1}}{A}$
88. The equation of state corresponding to 8 g of O_{2} is:
89. $P V=8 R T$
90. $P V=\frac{R T}{4}$
91. $P V=R T$
92. $P V=\frac{R T}{2}$
93. Two rods of equal length and area of the cross-section are kept parallel and lagged between temperatures $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$. The ratio of the effective thermal conductivity to that of the first rod is:
[the ratio $\left.\left(\mathrm{K}_{1} / \mathrm{K}_{2}\right)=3: 4\right]$
94. 7:4
95. 7:6
96. $4: 7$
97. 7:8
98. In the equation
$y=4 \cos \left(\frac{2 \pi x}{50}\right) \sin (100 \pi t)$
where x and y are in cm, t in sec, the node appears at x equal to (in cm):
99. 12.5
100. 50
101. 20
102. $100 / 2 \pi$

Chemistry - Section A

51. The IUPAC name of the following compound is

52. 2-(Ethoxycarbonyl)benzoylchloride
53. Ethyl 2-(chlorocarbonyl)benzoate
54. Ethyl 2-(chloromethanoyl)benzoate
55. Methyl 2-(Chlorocarbonyl)benzene carboxylate.
56. In context with beryllium, which one of the following statements is incorrect?
57. it is rendered passive by nitric acid
58. it forms $\mathrm{Be}_{2} \mathrm{C}$
59. its salts rarely hydrolyze
60. its hydride is electron-deficient and polymeric
61. The quantum number of four electrons are given below :
I. $n=4, l=2, m_{l}=-2, m_{s}=-\frac{1}{2}$
II. $n=3, l=2, m_{l}=1, m_{s}=+\frac{1}{2}$
III. $n=4, l=1, m_{l}=0, m_{s}=+\frac{1}{2}$
IV. $n=3, l=1, m_{l}=1, m_{s}=-\frac{1}{2}$

The correct order of their increasing energies will be -

1. I $<$ III $<$ II $<$ IV
2. IV $<$ II $<$ III $<$ I
3. I $<$ II $<$ III $<$ IV
4. IV $<$ III $<$ II $<$ I
5. Simplified absorption spectra of three complexes ((i),
(ii) and (iii)) of $\mathrm{M}^{\mathrm{n}+}$ ion are provided below; their $\lambda_{\text {max }}$ values are marked as A, B and C respectively. The correct match between the complexes and their $\lambda_{\max }$ values is:

(i) $\left[\mathrm{M}(\mathrm{NCS})_{6}\right]^{(-6+n)}$
(ii) $\left[\mathrm{MF}_{6}\right]^{(-6+\mathrm{n})}$
(iii) $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right]^{\mathrm{n}+}$
6. A-(ii), B-(i), C-(iii)
7. A-(iii), B-(i), C-(ii)
8. A-(ii), B-(iii), C-(i)
9. A-(i), B-(ii), C-(iii)
10. The total number of monohalogenated organic products (excluded stereoisomer) in the following reaction is-
A (simplest optically active alkene) $\xrightarrow[2 . C l_{2} / h v]{1 . H_{2} / N i}$ Products
11. 5
12. 4
13. 6
14. 8
15. An organic compound (A) (molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$) was hydrolyzed with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give a carboxylic acid (B) and alcohol (C). 'C' gives white turbidity immediately when treated with anhydrous ZnCl_{2} and conc. HCl . The organic compound (A) is-
16.

2.

3.

4.

57. The molecule in which hybrid MOs involve only one d-orbital of the central atom is :

1. $X e F_{4}$
2. $\left[N i(C N)_{4}\right]^{2-}$
3. $B r F_{5}$
4. $\left[C r F_{6}\right]^{3-}$
5. The increasing order of the reactivity of the following compounds in nucleophilic addition reaction is :
Propanal, Benzaldehyde, Propanone, Butanone
6. Butanone < Propanone < Benzaldehyde < Propanal
7. Propanal < Propanone < Butanone < Benzaldehyde
8. Benaldehyde < Propanal < Propanone $<$ Butanone
9. Benzaldehyde < Butanone < Propanone < Propanal
10. Lattice energy and enthalpy of solution of NaCl are $788 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The hydration enthalpy of NaCl is:
11. $-780 \mathrm{~kJ} \mathrm{~mol}^{-1}$
12. $-784 \mathrm{~kJ} \mathrm{~mol}^{-1}$
13. $780 \mathrm{~kJ} \mathrm{~mol}^{-1}$
14. $784 \mathrm{~kJ} \mathrm{~mol}^{-1}$
15. For a dimerization reaction, $2 \mathrm{~A}_{(\mathrm{g})} \rightarrow \mathrm{A}_{2(\mathrm{~g})}$ at 298 K , $\Delta U^{\Theta}=-20 \mathrm{~kJ} \mathrm{~mol}^{-1} \Delta \mathrm{~S}^{\Theta}=-30 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, then the $\Delta \mathrm{G}^{\Theta}$ will be- .
16. -10.4 kJ
17. 18.9 kJ
18. -13.5 kJ
19. 17.4 kJ
20. The correct structure of α-anomer of maltose, among the following is-
21.

3.

62. In the following reaction the reason why meta-nitro product also formed is:

1. Low temperature
2. $-\mathrm{NH}_{2}$ group is highly meta-directive
3. Formation of anilinium ion
4. $-\mathrm{NO}_{2}$ substitution always takes place at meta-position
5. Total number of lone pair of electrons in I_{3}^{-}ion is-
6. 3
7. 6
8. 9
9. 12
10. Phenol on treatment with CO_{2} in the presence of NaOH followed by acidification produces compound X as the major product. X on treatment with $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ in the presence of catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces :
11.

2.

3.

65. The major product formed in the following reaction is :

1.
2.

3.

4.

66. The lanthanoid that does NOT show +4 oxidation state is

1. Dy
2. Eu
3. Ce
4. Tb
5. Match the following :

	Test/Method		Reagent
(i)	Lucas Test	(a)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl} /$ aq. KOH
(ii)	Dumas method	(b)	$\mathrm{HNO}_{3} / \mathrm{AgNO}_{3}$
(iii)	Kjeldahl's method	(c)	$\mathrm{CuO} / \mathrm{CO}_{2}$
(iv)	Hinsberg Test	(d)	Conc. HCl and ZnCl_{2}
		(e)	$\mathrm{H}_{2} \mathrm{SO}_{4}$

1. (i)-(d). (ii)-(c), (iii)-(e), (iv)-(a)
2. (i)-(b), (ii)-(d), (iii)-(e), (iv)-(a)
3. (i)-(d), (ii)-(c), (iii)-(b), (iv)-(e)
4. (i)-(b), (ii)-(a), (iii)-(c), (iv)-(d)
5. A solution of phenol in chloroform when treated with aqueous NaOH gives compound P as a major product. The mass percentage of carbon in P is-
(to the nearest integer)
(Atomic mass : $\mathrm{C}=12 ; \mathrm{H}=1 ; \mathrm{O}=16$)
6. 65
7. 69
8. 73
9. 76
10. The rate of a reaction decreased by 3.555 times when the temperature was changed from $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The activation energy (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of the reaction is-
Take; $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \mathrm{In} 3.555=1.268$
11. $100 \mathrm{~kJ} / \mathrm{mol}$
12. $120 \mathrm{~kJ} / \mathrm{mol}$
$3.95 \mathrm{~kJ} / \mathrm{mol}$
13. $108 \mathrm{~kJ} / \mathrm{mol}$
14. Among the following, the order presents the correct sequence of the increasing basic nature of the given oxides is -
15. $\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{MgO}<\mathrm{Na}_{2} \mathrm{O}<\mathrm{K}_{2} \mathrm{O}$
16. $\mathrm{MgO}<\mathrm{K}_{2} \mathrm{O}<\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{Na}_{2} \mathrm{O}$
17. $\mathrm{Na}_{2} \mathrm{O}<\mathrm{K}_{2} \mathrm{O}<\mathrm{MgO}<\mathrm{Al}_{2} \mathrm{O}_{3}$
18. $\mathrm{K}_{2} \mathrm{O}<\mathrm{Na}_{2} \mathrm{O}<\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{MgO}$
19. If $10^{-4} \mathrm{dm}^{3}$ of water is introduced into a $1.0 \mathrm{dm}^{3}$ flask at 300 K . The total number of moles of water are in the vapour phase (equilibrium is established)is-
(Given: Vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at 300 K is 3170 pa; $\mathrm{R}=$ $0.0821 \mathrm{~atm} \mathrm{~L} \mathrm{~K}{ }^{-1} \mathrm{~mol}^{-1}$)
20. $1.26 \times 10^{-3} \mathrm{~mol}$
21. $5.56 \times 10^{-3} \mathrm{~mol}$
22. $1.53 \times 10^{-2} \mathrm{~mol}$
23. $4346 \times 10-^{2} \mathrm{~mol}$
24. Among the following, the mixture will produce a buffer solution when mixed in equal volumes is-
25. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
26. $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
27. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
$4.0 .1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COONa}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
28. For the reaction:
$\mathrm{FeO}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})} \rightleftharpoons \mathrm{Fe}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})}, \mathrm{K}_{\mathrm{p}}=0.265$ at 1050 K . If the initial partial pressures are: $\mathrm{p}_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $\mathrm{p}_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$, the partial pressure of CO_{2} at equilibrium at 1050 K would be -
(1) 4.61 atm
(2) 1.74 atm
(3) 0.46 atm
(4) 0.17 atm
29. Proper management of disposal of household and industrial wastes can be done by
30. Recycling the waste material to give useful products again
31. Burning and incineration of combustible waste
32. Sewage treatment
33. All of the above
34. The freezing point of a solution containing 8.1 g HBr in 100 g water assuming the acid to be 90% ionised is- (k_{f} for water $=1.86 \mathrm{~K} \mathrm{~mol}^{-1}$)
35. $0.85^{\circ} \mathrm{C}$
36. $-3.53^{\circ} \mathrm{C}$
37. $0^{\circ} \mathrm{C}$
38. $-0.35^{\circ} \mathrm{C}$
39. In the reaction
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \xrightarrow{\text { Oxidation }} \mathrm{A} \xrightarrow{\mathrm{NaOH}} \mathrm{B} \xrightarrow{\text { Sodalime }} \mathrm{C}$
Identify C is
40. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
41. $\mathrm{C}_{6} \mathrm{H}_{6}$
42. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$
43. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$
44. The standard emf of a cell, involving one electron change is found to be 0.591 V at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction is ($\mathrm{F}=96,500 \mathrm{C} \mathrm{mol}^{-1}$):
45. 1.0×10^{1}
46. 1.0×10^{5}
47. 1.0×10^{10}
48. 1.0×10^{30}
49. PCl_{3} and PCl_{5} both exist ; NCl_{3} exists but NCl_{5} does not exist. It is due to :
50. Lower electronegativity of P and N
51. Lower tendecy of N to form covalent bond
52. Availability of vacant d-orbital in P but not in N
53. Statement is itself incorrect
54. SN^{1} reaction is feasible in-
55.

2.
3.

4.

80. The term infinite dilution refers when :

1. $\alpha \rightarrow 1$, for weak electrolytes
2. An electrolyte is 100% dissociated
3. All interionic effects disappears
4. All of the above
5. For the reaction:
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
The correct statement(s) in the equation is(are):
a. Stoichiometric coefficient of Fe is 9 .
b. Aluminium is oxidized
c. Ferrous ferric oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ is oxidized
d. Aluminium is reduced.
6. a, c
7. a, b
8. b, c
9. c, d
10. Consider the following reaction:
$\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{A}+2 \mathrm{HCl}$
The product A is -
11. $\mathrm{H}_{3} \mathrm{PO}_{2}$
12. $\mathrm{H}_{3} \mathrm{PO}_{4}$
13. POCl_{3}
14. None of the above
15. BeSO_{4} and MgSO_{4} readily soluble in water while $\mathrm{CaSO}_{4}, \mathrm{SrSO}_{4}$ and BaSO_{4} are insoluble because-
16. Down the group hydration energy decreases
17. Down the group lattice energy increases
18. Down the group both hydration and lattice energy increases
19. None of the above
20. The compound prepared by prolonged electrolysis of water is-
21. CO_{2}
22. Methanol
23. Formaldehyde
24. Heavy water
25. The correct options to distinguish nitrate salts of $M n^{2+}$ and $C u^{2+}$ taken separately is
a. $M n^{2+}$ shows the characteristic green color in the flame test
b. Only Cu^{2+} shows the formation of a precipitate by passing $H_{2} S$ in acidic medium
c. Only $M n^{2+}$ shows the formation of precipitate by passing $\mathrm{H}_{2} \mathrm{~S}$ in faintly basic medium
d. $C u^{2+} / C u$ has higher reduction potential than $M n^{2+} / M n$ (measured under similar conditions)
26. Both a, and b are correct.
27. Both b, and c are correct.
28. Both c, and a are correct.
29. Both b and d are correct.

Chemistry - Section B

86. The number of chiral centres in the following compound is-

87. 4
88. 5
89. 6
90. 7
91. Mixture of chloroxylenol and terpineol acts as:
92. Antiseptic
93. Antipyretic
94. Antibiotic
95. Analgesic
96. The vapour pressures of pure liquids A and B are 400 and 600 mmHg , respectively at 298 K . On mixing the two liquids, the sum of their initial volumes is equal to the volume of the final mixture. The mole fraction of liquid B is 0.5 in the mixture. The vapour pressure of the final solution, the mole fractions of components A and B in the vapour phase, respectively are -
97. $500 \mathrm{mmHg}, 0.5,0.5$
98. $450 \mathrm{mmHg}, 0.5,0.5$
99. $500 \mathrm{mmHg}, 0.4,0.6$
100. $450 \mathrm{mmHg}, 0.4,0.6$
101. The right option for the statement "Tyndall effect is exhibited by", is:
102. Starch solution
103. Urea solution
104. NaCl solution
105. Glucose solution
106. The degenerate orbitals of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ are :
107. $d_{z} 2$ and $d_{x z}$
108. $d_{y z}$ and $d_{z} 2$
109. $d_{x z}$ and $d_{y z}$
110. $d_{x^{2}-y^{2}}$ and $d_{x y}$
111. The increasing order of the reactivity of the following compounds toward electrophilic aromatic substitution reactions(EASR) is :

(I)

(II)

(III)
112. III $<$ II $<$ I
113. III $<$ I $<$ II
114. II $<$ I $<$ III
115. I $<$ III $<$ II
116. The molar solubility of $\mathrm{Cd}(\mathrm{OH})_{2}$ is $1.84 \times 10^{-5} \mathrm{M}$ in water. The expected solubility of $\mathrm{Cd}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=12$ is :
117. $2.49 \times 10^{-10} M$
118. 119. $84 \times 10^{-9} M$
1. $6.23 \times 10^{-11} M$
2. $1.49 \times 10^{-9} M$
3. If 75% of a first order reaction was completed in 90 minutes, 60% of the same reaction would be completed in approximately (in minutes)-.
(Take : $\log 2=0.30 ; \log 2.5=0.40$)
4. 50 min
5. 60 min
6. 70 min
7. 65 min
8. According to molecular orbital theory, which of the following will not be a viable molecule?
9. He_{2}^{2+}
10. He_{2}^{+}
11. H_{2}^{-}
12. H_{2}^{2-}
13. The correct match between Item-I and Item-II :

	Item-I		Item-II
(a)	Natural rubber	(I)	1,3-butadiene + styrene
(b)	Neoprene	(II)	1,3-butadiene + acrylonitrile
(c)	Buna-N	(III)	Chloroprene
(d)	Buna-S	(IV)	Isoprene

1. (a)-(III), (b)-(IV), (c)-(I), (d)-(II)
2. (a)-(IV), (b)-(III), (c)-(II), (d)-(I)
3. (a)-(IV), (b)-(III), (c)-(I), (d)-(II)
4. (a)-(III), (b)-(IV), (c)-(II), (d)-(I)
5. The correct match between Item-1 (starting material) and item-II (reagent) for the preparation of benzaldehyde is :

	Item - I		Item - II
(I)	Benzene	(P)	HCl and $\mathrm{SnCl}_{2}, \mathrm{H}_{3} \mathrm{O}^{+}$
(II)	Benzonitrile	(Q)	$\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{BaSO}_{4}$,
(III)	Benzoyl Chloride	(R)	$\mathrm{CO}, \mathrm{HCl}$ and AlCl_{3}

1. (I)-(Q), (II)-(R) and (III)-(P)
2. (I)-(R), (II)-(Q) and (III)-(P)
3. (I)-(R), (II)-(P) and (III)-(Q)
4. (I)-(P), (II)-(Q) and (III)-(R)
5. Assertion : Nitrogen and Oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen.
Reason : The reaction between nitrogen and oxygen requires a high temperature.
6. Both assertion and reason are correct, and the reason is the correct explanation for the assertion
7. Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
8. The assertion is incorrect, but the reason is correct
9. Both the assertion and reason are incorrect
10. Consider the following reactions at $1100^{\circ} \mathrm{C}$
$(I) 2 \mathrm{C}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}, \Delta G^{\circ}=-460 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$(I I) 2 \mathrm{Zn}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{ZnO}, \Delta G^{\circ}=-360 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Based on these, select correct alternate :
11. Zinc can be oxidised by CO
12. Zinc oxide can be reduced by carbon
13. Both 1 and 2
14. None is the correct
15. A compound $M_{P} X_{q}$ has cubic close packing (сср) arrangement of X . Its unit cell structure is shown below. The empirical formula of the compound is

16. $M X_{2}$
17. $M_{2} X$
18. $M_{5} X_{14}$

1. $M X$

. $M_{5} X_{14}$
100. In an experiment, m grams of a compound X (gas/liquid/solid) taken in a container is loaded in a balance as shown in figure given below.

In the presence of a magnetic field, the pan with X is either deflected (Fig. I), upwards (figure II), or deflected downwards (figure III), depending on the compound X. Identify the correct statement(s).
a. If X is $\mathrm{H}_{2} \mathrm{O}(l)$, deflection of the pan is upwards
b. If X is $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](s)$, deflection of the pan is upwards
c. If X is $\mathrm{O}_{2}(\mathrm{~g})$, deflection of the pan is downwards
d. If X is $C_{6} H_{6}(l)$ deflection of the pan is downwards

1. a, b, and c are correct
2. Both b, and d are correct.
3. b, c, and d are correct.
4. a, b, and d are correct

Zoology - Section A

101. What is true for an ideal contraceptive?
I. It should be user-friendly
II. It should be easily available
III. It should be ineffective and reversible with least side effects
IV. It should be effective and reversible with least side effects.
V. It should interfere with the sexual act of the user
102. All of the above
103. I, II, III
104. I, II, IV
105. I, II, IV, V
106. To induce uterine contractions for parturition which of the following hormones can be injected to the female?
107. hCG
108. Estrogen
109. Progesterone
110. Oxytocin
111. Fight or flight reactions cause activation of 1. the parathyroid glands, leading to increased metabolic rate
112. the kidney, leading to suppression of reninangiotensinaldosterone pathway
113. the adrenal medulla, leading to increased secretion of epinephrine and norepinephrine
114. the pancreas leading to a reduction in the blood sugar levels
115. Serum differs from blood in
116. lacking globulins
117. lacking albumins
118. lacking clotting factors
119. lacking antibodies
120. Which one of the following correctly explains the function of a specific part of a human nephron?
121. Henle's loop - most reabsorption of the major substances from the glomerular filtrated
122. Distal convoluted tubule - reabsorption of ions into the surrounding blood capillaries
123. Afferent arteriole - carries the blood away from the glomerulus towards the renal vein
124. Podocytes- create minute spaces (slit pores) for the filtration of blood into the Bowman's capsule
125. The principal nitrogenous excretory compound in humans is synthesized.
126. in kidneys but eliminated mostly through liver
127. in kidneys as well as eliminated by kidneys
128. in liver and also eliminated by the same through bile
129. in the liver, but eliminated mostly through kidneys
130. If for some reason our goblet cells are nonfunctional, this will adversely affect us.
131. production of somatostatin
132. secretion of sebum From the sebaceous glands
133. maturation of sperms
134. smooth movement of food down the intestine
135. Given diagram shows bone of the left human hind limb as seen from front. It has certain mistakes in labeling.
Two of the wrongly labelled bones are

136. tibia and tarsals
137. femur and fibula
138. fibula and phalanges
139. tarsals and femur
140. Select the correct statement about biodiversity:
141. The desert areas of Rajasthan and Gujarat have a very high level of desert animal species as wellas numerous rare animals.
142. Large scale planting of Bt cotton has no adverse effect on biodiversity.
143. Western Ghats have a very high degree of species richness and endemism.
144. Conservation of biodiversity is just a fad pursued by the developed countries.
145. Which of the following is correct?
146. The chemical or metabolic conversion refers to a reaction.
147. The chemical which is converted into a product is called a substrate.
148. Proteins with three dimensional structures including an active site is called enzyme.
149. All of these
150. Enzymes enhance the rate of reaction by
151. forming a reactant-product complex
152. changing the equilibrium point of the reaction
153. combining with the product as soon as it is formed
154. lowering the activation energy of the reaction
155. The structures that help some bacteria to attach to rocks and / or host tissues are:
156. Fimbriae
157. Mesosomes
158. Holdfast
159. Rhizoids
160. Which group of animals belong to the same phylum?
161. Earthworm, Pinworm, Tapeworm
162. Prawn, Scorpion, Locusta
163. Sponge, Sea anemone, Starfish
164. Malarial parasite, Amoeba, Mosquito
165. Identify the molecules (a) and (b) shown below and select the right option giving their source
(a)

(b)

Molecule Source Use

1. (a) Cocaine

Erythroxylum Accelerates the transport coca of dopamine
2. (b) Heroin

Cannabis
Sativa
Depressant and slows down body functions
3. (b) Atropa
3. Cannabinoid belladona

4.	(a)	Papaver
Morphine	somniferum	

115. The figure below is the diagrammatic representation of the E.Coli vector pBR 322. Which one of the given options correctly identifies its certain component (s)?

116. ori - original restriction enzyme
117. rop-reduced osmotic pressure
118. Hind III, EcoRI - selectable markers
119. amp ${ }^{\mathrm{R}}$, tet ${ }^{\mathrm{R}}$ - antibiotic resistance genes
120. At a particular locus, frequency A allele is 0.6 and that of a si 0.4. What would be the frequency of heterozygotes in a random mating population at equilibrium?
121. 0.24
122. 0.16
123. 0.48
124. 0.34
125. Which one of the following options gives one correct example each of convergent evolution and divergent evolution?

Convergent evolution

1. Bones of forelimbs of vertebrates
2. Thorn of Bougainvillea and tendrils of Cucurbita
3. Eye of Octopus and mammals
4. Thorns of Bougainvillea and tendrils of Cucurbita

Divergent evolution
Wings of butterfly and birds
Eye of Octopus and mammals
Bones of forelimbs of vertebrates Wings of butterfly and birds
118. The technique called gamete intrafallopian transfer (GIFT) is recommended for those females

1. Who cannot provide a suitable environment for fertilisation.
2. Who cannot produce an ovum.
3. Who cannot retain the fetus inside the uterus.
4. Whose cervical canal is too narrow to allow passage for the sperms
5. In alveoli,
6. pCO_{2} is high and pO_{2} is low
7. pCO_{2} is low and pO_{2} is high
8. pCO_{2} is low and pO_{2} low
9. None of the above
10. An increase from pH 7.2 to pH 7.4 around hemoglobin causes
11. Hemoglobin to release all bound oxygen molecules.
12. An increase in the affinity of hemoglobin to bind oxygen molecules.
13. Hemoglobin to denature.
14. An increase in the binding of $\mathrm{H}+$ by hemoglobin.
15. The second heart sound during the cardiac cycle is produced by the:
16. Simultaneous opening of the atrioventricular valves
17. Simultaneous closure of the atrioventricular valves
18. Simultaneous opening of the semilunar valves
19. Simultaneous closure of the semilunar valves
20. Which of the following hormone regulates sleepwake cycle?
21. Melatonin
22. Thyroxine
23. Vasopressin
24. MSH

123. Acrosome is

1. Part of sperm head
2. Caps the anterior portion of haploid nucleus
3. Has enzymes for fertilization
4. All of these
5. At puberty, how many primary follicles are there in each ovary in a female?
6. 60000-80000
7. 120000-160000
8. 30000-40000
9. 12000
10. Which of the following represents the prokaryotic cell
11. bacteria, blue-green algae, mycoplasma, PPLO
12. bacteria, blue-green algae, microbes, chlorella
13. bacteria, blue-green algae, slime moulds and Diatoms
14. bacteria, blue-green algae only
15. Choose the correct pair

1 Physical barriers - HCl in stomach, saliva in mouth
2 Cellular barriers - PMNL, NK cells
3 Physiological barriers - Mucosa of gut, urinogenital tract 4 Cytokine barriers - Exotoxins
127. The molecule that provides stability to cell membrane is
(1)

(2)

(3)

(4)

128. Which of the following is not a correct match of a nervous structure and its function?

1. Corpus striatum - Regulates planning and execution of stereotyped movements
2. Amygdala - Controls emotional behaviour like aggression and fear
3. Cerebellum - Controls rapid muscular activities like running, typing, talking etc.
4. Medulla - Controls stretch reflexes
5. Which of the following statements is not correct?
6. An action potential in an axon does not move backward because the segment behind is in a refractory phase.
7. Depolarization of hair cells of cochlea results in the opening of the mechanically gated Potassium- ion channels.
8. Rods are very sensitive and contribute to daylight vision.
9. In the knee-jerk reflex, stimulus is the stretching of muscle and response is its contraction.
10. Match the Column I and Column II

Column-I

(a) P-waves
(b) QRS complex
(c) T-wave
(d) Reducti

Column-II
(i)

Depolarisation of ventricles
(ii) Repolarisation of ventricles
(iii) Coronary ischemia
(iv) Depolarisation of artria
(v) Repolarisation of atria

Select the correct option
(a) (b) (c) (d)

1. (ii) (iii) (v) (iv)
2. (iv) (i) (ii) (iii)
3. (iv) (i) (ii) (v)
4. (ii) (i) (v) (iii)
5. First discovered restriction endonuclease that always cuts DNA molecule at a particular point by recognizing a specific sequence of six base pairs is:
(1) EcoR1
(2) Adenosine deaminase
(3) Thermostable DNA polymerase
(4) Hind II
6. The development of P.americana is
7. Holometabolous
8. Paurometabolous
9. Hemimetabolous
10. Ametabolous
11. Match List-I with List-II

List-I	List-II
(a) Vaults	I. Entry of sperm through the Cervix is
(b) IUDs	blocked
(c)	II. Removal of Vas deferens
Vasectomy	III. Phagocytosis of sperms within the
(d)	Uterus
Tubectomy	IV. Removal of the fallopian tube

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (ii) (iv) (iii) (i)
2. (iii) (i) (iv) (ii)
3. (iv) (ii) (i) (iii)
4. (i) (iii) (ii) (iv)
5. Which one of the following organisms bears hollow and pneumatic long bones?
6. Macropus
7. Ornithorhynchus
8. Neophron
9. Hemidactylus
10. The Adenosine deaminase deficiency results into:
11. Digestive disorder
12. Addison's disease
13. Dysfunction of Immune system
14. Parkinson's disease

Zoology - Section B

136. Match the source gland with its respective hormone and function and select the correct option.

\quadSource gland 1. Anterior pituitary uterine muscles	Hormone Oxytocin	Function 2. Anterior pituitary
Contraction of reabsorption of water in	Vephron 3. Thymus	Thymosin

137. Bicarbonate is not reabsorbed by
138. PCT
139. DCT
140. Henle's Loop
141. All of these
142. Which one of the following is the correct matching of the events occurring during menstrual cycle?

Column I Column II
LH and FSH attain peak level and

1. Ovulation sharp fall in the secretion of progesterone
2. Proliferative
phase
Development
3. of corpus luteum
4. Menstruation

Rapid regeneration of myometrium and maturation of Graafian follicle

Secretory phase and increased secretion of progesterone

Breakdown of myometrium and ovum not fertilized
139. Which one of the following is False?
1.Fatty acids and glycerol are soluble in water
2.Phospholipids are found in the cell membrane
3.Oils have lower melting point.
4.In lipids fatty acids are found esterified with glycerol
140. Select the correct statement from the following regarding cell membrane.

1. Na^{+}and K^{+}ions move across cell membrane by passive transport
2. Proteins make up 60 to 70% of the cell membrane.
3. Lipids are arranged in a bilayer with polar heads towards the inner part.
4. Fluid mosaic model of cell membrane was proposed by Singer and Nicolson
5. Which one of the following statements about certain given animals is correct?
6. Molluscs are acoelomates
7. Insects are pseudocoelomoates
8. Flatworms (Platyhelminthes) are coelomates
9. Roundworms (Aschelminthes) are pseudocoelomates.
10. Consider the following four statements (a-d) regarding kidney transplant and select the two correct ones out of these.
(a) Even if a kidney transplant is proper the recipient may need to take immuno suppresants for a long time
(b) The cell-mediated immune response is responsible for the graft regection
(c) The B- lymphocytes are responsible for rejection of the graft
(d) The acceptance or rejection of a kidney transplant depends on specific interferons
The two correct statements are
11. (c) and (d)
12. (a) and (c)
13. (a) and (b)
14. (b) and (c)
15. Given below is a sample of a portion of DNA strand. What is so special shown in it

5' GAATTC 3'

3' CTTAAG 5'

1. Replication completed
2. Deletion mutation
3. Start codon at the 5 ' end
4. Palindromic sequence of base pairs
5. The two polypeptides of human insulin are linked together by
6. Hydrogen bonds.
7. Phosphodiester bond.
8. Covalent bond.
9. Disulphide bridges.
10. Vitreous humor is found in vitreous chamber
11. Between lens and retina
12. Between cornea and lens
13. Between sclera and lens
14. Between choroid and lens
15. All the ribs are attached to
(1) Sternum
(2) Verterbal column
(3) Clavicle
(4) lium
16. In a species, the weight of newborn ranges from 2 to $5 \mathrm{~kg} .97 \%$ of the newborn with an average weight between 3 to 3.3 kg survive whereas 99% of the infants born with weights from 2 to 2.5 kg or 4.5 kg to 5 kg die. Which type of selection process is taking place?
17. Cyclical selection
18. Directional selection
19. Stabilizing selection
20. Disruptive selection
21. Match the following structures with their respective location in organs:
(a) Crypts of Lieberkuhn (i) Pancreas
(b) Glisson's Capsule
(ii) Duodenum
(c) Islets of Langerhans
(iii) Small intestine
(d) Bruunner’s Glands
(iv) Liver

Select the correct option from the following:
(a) (b)
(c) (d)

1. (iii) (ii) (i) (iv)
2. (iii) (i) (ii) (iv)
3. (ii) (iv) (i) (iii)
4. (iii) (iv) (i) (ii)
5. Select the incorrectly matched pair from the following:
6. Chondrocytes - Smooth muscle cells
7. Neurons - Nerve cells
8. Fibroblast - Areolar tissue
9. Osteocytes - Bone cells
10. Match the following columns and select the correct option :

Column - I Column - II

(a) Pneumotaxic Centre
(i) Alveoli
(b) O_{2} Dissociation curve
(ii) Pons region of brain
(c) Carbonic Anhydrase
(iii) Haemoglobin
(d) Primary site of exchange of gases
(iv) R.B.C.
(1) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
(2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
(3) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
(4) (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)

Botany - Section A

151. Which element is required by the plants for uptake and utilization of calcium and carbohydrate translocation ?
152. Manganese
153. Boron
154. Chlorine
155. Selenium
156. In vehicles, catalytic converters are used
157. to increase mileage of vehicles
158. to convert CO_{2} into carbonates
159. to increase the efficiency of lead mixed petrol
160. to convert CO to CO_{2}.
161. How do herbivores and other animals obtain Phosphorous?
162. From soil in the dissolved form
163. From plants
164. From drinking water
165. Synthesized in the body.
166. If one wants to write a whole reaction of Krebs’ cycle, then how many water molecules are utilizing in net calculation?
167. Two
168. One
169. Three
170. Four
171. An increase in the concentration of the toxicant at successive trophic levels is called
172. Biopiracy
173. Biomagnification
174. Biomanagement
175. Biosystematics
176. A biologist studied the population of rats in a barn. He found that the average natality was 250 , average mortality 240 , immigration 20 and emigration 30 . The net increase in population is
177. 10
178. 15
179. 5
180. zero
181. Which of the following was presented as evidence in favor of "the RNA world" hypothesis?
182. The fact that DNA can encode genetic information
183. The fact that enzymes, made of protein, can catalyze biological reactions
184. The discovery that some enzymes are composed of RNA rather than protein
185. The discovery of new life forms that encode their genetic information in RNA rather than DNA
186. What type of ecological pyramid would be obtained with the following data?
Secondary consumer: 120 g
Primary consumer: 60 g
Primary producer: 10 g
187. Inverted pyramid of biomass
188. Pyramid of energy
189. Upright pyramid of numbers
190. Upright pyramid of biomass
191. Match the items given in Column I with those in Column II and select the correct option given below-

Column I Column II
a. Herbarium
b. Key
c. Museum
d. Catalogue
i. It is a place having a collection of preserved plants and animals.
ii. A list that enumerates methodically all the species found in an area with brief description aiding identification.
iii. Is a place where dried and pressed plant specimens mounted on sheets is kept.
iv. A booklet containing a list of characters and their alternates which are helpful in identification of various taxa.

1. a-I b-iv c-iii d-ii
2. a-iii b-ii c-I d-iv
3. a-ii b-iv c-iii d-i
4. a-iii b-iv c-i d-ii
5. Select the wrong statement.
6. Diatoms are microscopic and float passively in water.
7. The walls of diatoms are easily destructible.
8. 'Diatomaceous earth' is formed by the cell walls of diatoms.
9. Diatoms are chief producers in the oceans.
10. In angiosperms, microsporogenesis and megasporogenesis:
11. form gametes without further divisions
12. Involve meiosis
13. occur in ovule
14. occur in anther
15. Which of the following statements is not correct?
16. Some reptiles have also been reported as pollinators in some plant species.,
17. Pollen grains of many species can germinate on the stigma of a flower, but only one pollen tube of the same species grows into the style.
18. Insects that consume pollen or nectar without bringing about pollination are called pollen/ nectar robbers.
19. Pollen germination and pollen tube growth are regulated by chemical components of pollen interacting with those of the pistil
20. The ovule of an angiosperm is technically equivalent to
21. megaspore
22. megasporangium
23. megasporophyll
24. megaspore mother cell
25. Commonly used vectors for human genome sequencing are:
26. T - DNA
27. BAC and YAC
28. Expression Vectors
29. T/A Cloning Vectors
30. Why photorespiration does not take place in C_{4} plants?
31. Do not contain RuBisCo.
32. Have a mechanism that increases the concentration of CO_{2} at the enzyme site.
33. Cells do not allow oxygen to accumulate in them.
34. Cells are impermeable to oxygen
35. Select the correct statement about G_{1} phase:
36. Cell is metabolically inactive
37. DNA in the cell does not replicate
38. It is not a phase of synthesis of macromolecules
39. Cell stops growing
40. Xylem transports from roots to the aerial parts of the plants
41. Water, mineral salt
42. Some organic Nitrogen
43. Inorganic solutes, Hormones
44. All of these
45. Identify X

46. Stem
47. Runner
48. Offset
49. Bud
50. Incomplete dominance is present in
51. Snapdragon flower
52. Dog flower
53. Antirrhinum flower
54. All of the above
55. Wine and beer are produced
56. By distillation only
57. By fermentation and distillation
58. By fermentation but without distillation
59. Without fermentation and distillation
60. How many possible genotypes can be observed in a human population for ABO blood group system?
61. 3
62. 6
63. 10
64. 4
65. Mark a, b, c, and d

66. Metaxylem, protoxylem, cortex, trichome
67. Endodermis, cortex, protoxylem, root hair
68. Endodermis, cortex, metaxylem, root hair
69. Pericycle, cortex, metaxylem, trichome
70. At which stage of mitotic cell division, the following characteristics are first seen?
(a) Chromosome as two stranded structure
(b) Spindle fibre formation at poles
(c) Formation of interzonal fibres (IZF)
71. (a)-Prophase, (b)-Metaphase, (c)-Anaphase
72. (a) and (b)-Prophase, (c)-Anaphase
73. (a)-Prophase, (b) and (c)-Metaphase
74. (a)-Prophase, (b)-Metaphase, (c)-Telophase
75. What will be the sequence of mRNA produced by the following stretch of DNA?
3' ATGCATGCATGCATG 5' TEMPLATE STRAND
5' TACGTACGTACGTAC 3' CODING STRAND
76. 3' AUGCAUGCAUGCAUG 5'
77. 5' UACGUACGUACGUAC 3'
78. 3' UACGUACGUACGUAC 5'
79. 5' AUGCAUGCAUGCAUG 3'
80. Match the organisms in column I with habitats in 180. Choose correct pair column II.

Column I

(a) Halophiles
(b) Thermoacidophiles
(c) Methanogens
(d) Cyanobacteria

Column II

(i) Hot springs
(ii) Aquatic environment
(iii) Guts of ruminants
(iv) Salty areas
nswer from the options given below:

1. (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
2. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
3. (a)-(iii), (b)-(iv), (c)-(i), (d)-(i)
4. (a)-(ii). (b)-(iv), (c)-(iii), (d)-(i)
5. Match the following genes of Lac operon with their respective products:
(a) i gene (i) β-galactosidase
(b) Z gene
(ii) Permease
(c) A gene (iii) Repressor
(d) Y gene (iv) transacetylase

Select the correct option

	(a)	(b)	(c)	(d)
1.	(iii)	(iv)	(i)	(ii)
2.	(i)	(iii)	(ii)	(iv)
3.	(iii)	(i)	(ii)	(iv)
4.	(iii)	(i)	(iv)	(ii)

177. Pinus seed cannot germinate and establish without fungal association. This is because:
178. its seeds contain inhibitors that prevent germination.
179. its embryo is immature.
180. it has obligate association with mycorrhizae.
181. it has very hard seed coat.
182. Identify the correct statement with regard to G_{1} phase (Gap 1) of interphase.
183. The reorganisation of all cell components takes place.
184. The cell is metabolically active, grow but does not replicate its DNA
185. Nuclear Division takes place
186. DNA synthesis or replication takes place.
187. Match the following concerning the activity/function and the phytohormone involved :-
(a) Fruit ripener
(i) Abscisic acid
(b) Herbicide
(ii) GA 3
(c) Bolting agent
(iii) $2,4-\mathrm{D}$
(d) Stress hormone
(iv) Ethephon

Select the correct option from following :-

1. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
2. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
3. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
4. (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)

181. Assertion (A) :

 heart palpitations.
Reason (R) :

 does not get sufficient oxygen. answer from the options given below.1. (A) is true but (R) is false
2. (A) is false but (R) is true explanation of (A) explanation of (A) diagram called:
3. Punnett square
4. Net square
5. Bullet square
6. Punch square
7. Match List - I with List-II.
(a) (b) (c) (d)
8. (iii) (i) (iv) (ii)
9. (ii) (i) (iv) (iii)
10. (ii) (iv) (i) (iii)
11. (iv) (iii) (ii) (i)

Placentation Example

1. Marginal - Dianthus, Silene
2. Axile - Pea, Acacia
3. Parietal - Lemon, Petunia
4. Basal - Triticum, Sunflower

A person goes to high altitude and experiences 'altitude sickness' with symptoms like breathing difficulty and

Due to low atmospheric pressure at high altitude, the body
In the light of the above statements, choose the correct
3. Both (A) and (R) are true and (R) is the correct
4. Both (A) and (R) are true but (R) is not the correct
182. The production of gametes by the parents, formation of zygotes, the F_{1} and F_{2} plants, can be understood from a

List-I	List-II
(a) Cohesion	(i) More attraction in liquid phase (ii)Mutual attraction among water
(b) Adhesion	
(c) Surface	molecules
tension	
(d) Guttation Water loss in liquid phase	
(iv) Attraction towards polar surfaces	

Choose the correct answer from the options given below.
184. Match Column-I with Column-II

Column-I
Column-II
a $\% \mathrm{C}_{(5)} \mathrm{C}_{1+2+(2)} \mathrm{A}_{(9)+1} \underline{\mathrm{G}}_{1}$ i Brassicaceae
$\mathrm{b} \oplus \underset{\square}{C} \mathrm{~K}_{(5)} \widetilde{\mathrm{C}_{(5)} \mathrm{A}_{5}} \underline{\mathrm{G}}_{2}$
ii Liliaceae
$\mathrm{c} \oplus \widehat{O}_{(3+3)} \mathrm{A}_{3+3} \underline{\mathrm{G}}_{(3)}$
iii Fabaceae
d $\oplus \not \subset \neq \mathrm{K}_{2+2} \mathrm{C}_{4} \mathrm{~A}_{2-4} \underline{\mathrm{G}}_{(2)} \quad$ iv Solanaceae
Select the correct answer from the options given below.
(a) (b) (c) (d)

1. (ii) (iii) (iv) (i)
2. (iv) (ii) (i) (iii)
3. (iii) (iv) (ii) (i)
4. (i) (ii) (iii) (iv)
5. Identify the incorrect pair.
6. Lectins - Concanavalin A
7. Drugs - Ricin
8. Alkaloids - Codeine
9. Toxin - Abrin

Botany - Section B

186. DNA dependent RNA polymerase catalyzes polymerization in:
187. Only in $3^{\prime}-5^{\prime}$ direction
188. Only in 5' - 3' direction
189. In both directions
190. In neither directions
191. The motion of sister Chromatids toward opposite poles of the cell occurs by
192. Shortening of microtubules attached to centromere
193. Shortening of microtubules attached to kinetochores
194. Shortening of microtubules attached to Metaphase plate
195. Shortening of microtubules attached to other homologous chromosomes
196. Study the pathway given below. In which of the following options correct words for all the three blanks a,b and c are indicated.

(a)
(b)
(c)
197. Carboxylation Decarboxylation Reduction
198. Decarboxylation Reduction

Regeneration
3. Fixation Transamination Regeneration
4. fixation Decarboxylation Regeneration
189. Graph below is a diagrammatic representation of response of organisms to biotic factors. What do a,b,c represent respectively?

1. Partial regulator, conformer, regulator
2. Regulator, conformer, Partial regulator
3. Conformer, regulator, Partial, regulator
4. Regulator, Partial conformer, regulator
5. Companion cells are closely associated with
6. Sieve elements
7. Vessel elements
8. Trichomes
9. Guard cells
10. Isogamous condition with non-flagellated gametes is found in:
11. Spirogyra
12. Volvox
13. Fucus
14. Chlamydomonas
15. Most favourite and ideal material for researches in genetics is
16. Housefly
17. Mosquito
18. Frog
19. Fruitfly.
20. Which of the following are the important floral rewards to the animal pollinators?
21. Nectar and pollen grains
22. Floral fragrance and calcium crystals
23. Protein pellicle and stigmatic exudates
24. Colour and large size of flower
25. Agarose extracted from sea weeds finds use in
26. Spectrophotometry
27. Tissue Culture
28. PCR
29. Gel electrophoresis
30. Read the following statement and select the right choice
a. Semi-dwarf varieties, Jaya and Ratna were developed in IRRI, Philippines.
b. Classical plant breeding involves crossing or hybridisation of pure lines.
c. Saccharum barberi was originally grown in South India.
d. Genetic variability is the root of any breeding programme.
31. Only a is correct
32. b \& d are correct
33. a, b \& c are correct
34. c \& d are correct
35. Which one of the following is a correct statement?
36. In the cymose type of inflorescence, the main axis continues to grow
37. The ovary is half inferior in the flowers of cucumber
38. In castor, the endosperm is not present in mature seeds
39. Seeds of dicot and monocot plants vary in shape, size and period viability
40. Mad cow disease in cattle is caused by an organism which has :
41. Inert crystalline
42. Abnormally folded protein
43. Free RNA without protein coat
44. Free DNA without protein coat
45. Select the correct group of biocontrol agents
46. Nostoc, Azospirillium, Nucleopolyhedrovirus
47. Bacillus thuringiensis. Tobacco mosaic virus, Aphids
48. Trichoderma, Baculovirus, Bacillus thuringiensis
49. Oscilatoria, Rhizobium, Trichoderma
50. The Earth Summit held in Rio de Janeiro in 1992 was called:
51. for immediate steps to discontinue use of CFCs that were damaging the ozone layer
52. to reduce CO_{2} emissions and global warming
53. for conservation of biodiversity and sustainable utilization of its benefits
54. to asess threat posed to native species by invasive weed species
55. Yeasts poison themselves to death when the concentration of alcohol reaches about
56. 5 percent
57. <5 percent
58. <8 percent
59. 13 percent

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

