Electrostatic Potential and Capacitance

1.

A parallel plate capacitor having cross-sectional area A and separation d has air in between the plates. Now an insulating slab of the same area but thickness $\mathrm{d} / 2$ is inserted between the plates as shown in the figure having dielectric constant $K(=4)$. The ratio of new capacitance to its original capacitance will be?

1. $2: 1$
2. $8: 5$
3. $6: 5$
4. $4: 1$
5.

The capacitance of a parallel plate capacitor with air as medium is $6 \mu \mathrm{~F}$. With the introduction of a dielectric medium, the capacitance becomes $30 \mu \mathrm{~F}$. The permittivity of the medium is: $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$

1. $1.77 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
2. $0.44 \times 10^{-10} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
3. $5.00 \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
4. $0.44 \times 10^{-13} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
5.

A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery, the distance between the plates of the capacitor is increased using an insulating handle. As a result the potential difference between the plates:

1. decreases
2. does not change
3. becomes zero
4. increases
5.

A parallel plate air capacitor has capacity C, distance of separation between plates is d and potential difference V is applied between the plates. Force of attraction between the plates of the parallel plate air capacitor is?

1. $\frac{C^{2} V^{2}}{2 d}$
2. $\frac{C V^{2}}{2 d}$
3. $\frac{C V^{2}}{d}$
4. $\frac{C^{2} V^{2}}{2 d^{2}}$
5.

The energy required to charge a parallel plate condenser of plate separation d and plate area of cross-section A such that the uniform electric field between the plates is E, is?

1. $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} / \mathrm{Ad}$
2. $\varepsilon_{0} \mathrm{E}^{2} / \mathrm{Ad}$
3. $\varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
4. $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
5.

The capacity of a parallel plate condenser is C. It's capacity when the separation between the plates is halved will be?
(1) 4 C
(2) $2 C$
(3) $\frac{C}{2}$
(4) $\frac{C}{4}$
7.

The plates of a parallel plate condenser are pulled apart with a velocity v. If at any instant their mutual distance of separation is d, then the magnitude of the time rate of change of capacity depends on d as follows
(1) $1 / d$
(2) $1 / d^{2}$
(3) d^{2}
(4) d
8.

The capacity of a parallel plate condenser is $15 \mu F$, when the distance between its plates is 6 cm . If the distance between the plates is reduced to 2 cm , then the capacity of this parallel plate condenser will be?
(1) $15 \mu F$
(2) $30 \mu F$
(3) $45 \mu F$
(4) $60 \mu F$
9.

The equivalent capacitance between A and B is?

(1) $2 \mu F$
(2) $3 \mu F$
(3) $5 \mu F$
(4) $0.5 \mu F$
10.

A parallel plate condenser is filled with two dielectrics as shown. Area of each plate is A metre ${ }^{2}$ and the separation is t metre. The dielectric constants are k_{1} and k_{2} respectively. Its capacitance in farad will be?

(1) $\frac{\varepsilon_{0} A}{t}\left(k_{1}+k_{2}\right)$
(2) $\frac{\varepsilon_{0} A}{t} \cdot \frac{k_{1}+k_{2}}{2}$
(3) $\frac{2 \varepsilon_{0} A}{t}\left(k_{1}+k_{2}\right)$
(4) $\frac{\varepsilon_{0} A}{t} \cdot \frac{k_{1}-k_{2}}{2}$
11.

Three capacitors of capacitances $3 \mu F, 9 \mu F$ and $18 \mu F$ are connected once in series and another time in parallel. The ratio of equivalent capacitance in the two cases $\left(\frac{C_{s}}{C_{p}}\right)$ will be?
(1) $1: 15$
(2) $15: 1$
(3) $1: 1$
(4) $1: 3$
12.

A parallel plate capacitor of capacitance C is connected to a battery and is charged to a potential difference V. Another capacitor of capacitance $2 C$ is connected to another battery and is charged to potential difference $2 V$. The charging batteries are now disconnected and the capacitors are connected in parallel to each other in such a way that the positive terminal of one is connected to the negative terminal of the other. The final energy of the configuration is?
(1) Zero
(2) $\frac{25 C V^{2}}{6}$
(3) $\frac{3 C V^{2}}{2}$
(4) $\frac{9 C V^{2}}{2}$
13.

In the connections shown in the adjoining figure, the equivalent capacity between A and B will be?

(1) $10.8 \mu F$
(2) $69 \mu F$
(3) $15 \mu F$
(4) $10 \mu F$
14.

Two capacitances of capacity C_{1} and C_{2} are connected in series and potential difference V is applied across it. Then the potential difference across C_{1} will be?
(1) $V \frac{C_{2}}{C_{1}}$
(2) $V \frac{C_{1}+C_{2}}{C_{1}}$
(3) $V \frac{C_{2}}{C_{1}+C_{2}}$
(4) $V \frac{C_{1}}{C_{1}+C_{2}}$
15.

A series combination of n_{1} capacitors, each of value C_{1}, is charged by a source of potential difference 4 V . When another parallel combination of n_{2} capacitors, each of value C_{2}, is charged by a source of potential difference V, it has the same (total) energy stored in it, as the first combination has. The value of C_{2}, in terms of C_{1}, is then
(1) $\frac{2 C_{1}}{n_{1} n_{2}}$
(2) $16 \frac{n_{2}}{n_{1}} \mathrm{C}_{1}$
(3) $2 \frac{n_{2}}{n_{1}} \mathrm{C}_{1}$
(4) $\frac{16 C_{1}}{n_{1} n_{2}}$
16.

Two condensers, one of capacity C and the other of capacity $\mathrm{C} / 2$ are connected to a V volt battery, as shown.

The work done in charging fully both the condensers is?

1. $2 C V^{2}$
2. $\frac{1}{4} C V^{2}$
3. $\frac{3}{4} C V^{2}$
4. $\frac{1}{2} C V^{2}$
5.

100 capacitors each having a capacity of $10 \mu F$ are connected in parallel and are charged by a potential difference of 100 kV . The energy stored in the capacitors and the cost of charging them, if electrical energy costs 108 paise per $k W h$, will be?
(1) 10^{7} joule and 300 paise
(2) 5×10^{6} joule and 300 paise
(3) 5×10^{6} joule and 150 paise
(4) 10^{7} joule and 150 paise
18.

The capacities of two conductors are C_{1} and C_{2} and their respective potentials are V_{1} and V_{2}. If they are connected by a thin wire, then the loss of energy will be given by
(1) $\frac{C_{1} C_{2}\left(V_{1}+V_{2}\right)}{2\left(C_{1}+C_{2}\right)}$
(2) $\frac{C_{1} C_{2}\left(V_{1}-V_{2}\right)}{2\left(C_{1}+C_{2}\right)}$
(3) $\frac{C_{1} C_{2}\left(V_{1}-V_{2}\right)^{2}}{2\left(C_{1}+C_{2}\right)}$
(4) $\frac{\left(C_{1}+C_{2}\right)\left(V_{1}-V_{2}\right)}{C_{1} C_{2}}$
19.

A capacitor of capacitance $5 \mu F$ is connected as shown in the figure. The internal resistance of the cell is 0.5Ω. The amount of charge on the capacitor plate is?

(1) $0 \mu \mathrm{C}$
(2) $5 \mu C$
(3) $10 \mu C$
(4) $25 \mu \mathrm{C}$
20.

In the given figure each plate of capacitance C has partial value of charge?

(1) $C E$
(2) $\frac{C E R_{1}}{R_{2}-r}$
(3) $\frac{C E R_{2}}{R_{2}+r}$
(4) $\frac{C E R_{1}}{R_{1}-r}$

Fill OMR Sheet

