1.

Three resistances $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, each of 2Ω and an unknown resistance S form the four arms of a Wheatstone bridge circuit. When the resistance of 6Ω is connected in parallel to S , the bridge gets balanced. What is the value of S?

1. 2Ω
2. 3Ω
3. 6Ω
4. 1Ω
5.

A battery of internal resistance r, when connected across 2Ω resistor supplies a current of 4 A . When the same battery is connected across a 5Ω resistor, it supplies a current of 2A. The value of internal resistance r is:

1. 2Ω
2. 1Ω
3. 0.5Ω
4. zero Ω
5.

In the circuit shown in the figure, the current supplied by the battery is:

1. 2 A
2. 1 A
3. 0.5 A
4. 0.4 A
5.

The potential difference between points A and B is:

1. 2 V
2. 6 V
3. 4 V
4. 3 V
5.

In the circuit shown in the adjoining figure, the potential difference between B and D is zero, the unknown resistance is:

(1) 4Ω
(2) 2Ω
(3) 3Ω
(4) EMF of a cell is required to find the value of X
6.

A coil heating a bucket full of water raises the temperature by $5{ }^{\circ} \mathrm{C}$ in 2 min . If the current in the coil is doubled, what will be the change in temperature of water in 1 min ?

Consider no losses of heat to surroundings.

1. $10{ }^{\circ} \mathrm{C}$
2. $5^{\circ} \mathrm{C}$
3. $20^{\circ} \mathrm{C}$
4. $15{ }^{\circ} \mathrm{C}$
5.

A 220 V , 1000 W bulb is connected across a 110 V mains supply. The power consumed is:

1. 1000 W
2. 750 W
3. 500 W
4. 250 W
5.

What is the equivalent resistance between points a and b, if the value of each resistance is R ?

1. 7 R
2. 5 R
3. 4 R
4. 3 R
5.

The wire $A B$ shown in the figure has a uniform crosssection area and is 100 cm long. Where should the terminal D of the galvanometer be connected to the wire to get zero deflection in the galvanometer?

1. 40 cm from A
2. 50 cm from A
3. 40 cm from B
4. 80 cm from B
5.

Two cells of e.m.f. E and internal resistance r_{1} and r_{2} are connected in series through an external resistance R. The value of R for which the potential difference across one of the cells becomes zero will be:

1. $\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{1}+\mathrm{r}_{2}}$
2. $\mathrm{r}_{1}+\mathrm{r}_{2}$
3. $\left|\mathrm{r}_{2}-\mathrm{r}_{1}\right|$
4. $\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}$
5.

Two heater wires of equal length are first connected in series and then in parallel. The ratio of heat production in the two cases is:

1. $1: 3$
2. $1: 2$
3. $1: 8$
4. $1: 4$
5.

Two batteries, one of emf 18 V and internal resistance 2 Ω and the other of emf 12 V and internal resistance 1Ω are connected as shown. Reading of the voltmeter is: (if voltmeter is ideal)

1. 14 V
2. 15 V
3. 18 V
4. 30 V
5.

A current of 2 A is to be sent through a resistor of 5Ω. Number of cells required in series, if each has emf 2 V and internal resistance 0.5Ω, is

1. 40
2. 30
3. 20
4. 10
5.

The potentiometer wire PQ is 100 cm long and its resistance is $2 r$, where r is the internal resistance of the battery. The balancing length PC is equal to:

1. 25 cm
2. 75 cm
3. 50 cm
4. 40 cm
5.

In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35.0 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63.0 cm , then the emf of the second cell is:
(1) 1.27 V
(2) 2.25 V
(3) 3.27 V
(4) 3.25 V
16.

The storage battery of a car has an emf of 12 V . If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery?
(1) 30 A
(2) 20 A
(3) 10 A
(4) 40 A
17.

A battery of emf 10 V and internal resistance 3Ω is connected to a resistor. If the current in the circuit is 0.5 A, what is the terminal voltage of the battery when the circuit is closed?
(1) 10 V
(2) 8.5 V
(3) 1.5 V
(4) 7.2 V
18.

According to this diagram, the potential difference across the terminals is:
(internal resistance of cell=r)

1. $\mathrm{V}=\mathrm{E}-\mathrm{ir}$
2. $\mathrm{V}=\mathrm{E}+\mathrm{ir}$
3. $V=E$
4. Zero
5.

Two cells of e.m.f. E_{1} and E_{2} are joined in series and the balancing length of the potentiometer wire is 625 cm . If the terminals of E_{1} are reversed, the balancing length obtained is 125 cm . Given $\mathrm{E}_{2}>\mathrm{E}_{1}$, the ratio $\mathrm{E}_{1}: \mathrm{E}_{2}$ will be:

1. $2: 3$
2. $5: 1$
3. $3: 2$
4. $1: 5$
5.

The power dissipated in the circuit shown in the figure is 30 Watts. The value of R is:

1. 15Ω
2. 10Ω
3. 30Ω
4. 20Ω

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

