Thermodynamics' Properties AND PROCESS - LEVEL I

1 A necessary condition for an adiabatic change is-

1. $\Delta \mathrm{T}=0$
2. $\Delta \mathrm{P}=0$
3. $q=0$
4. $\mathrm{w}=0$

2 Which, among the following, is not a state function?

1. Internal energy
2. Free energy
3. Work
4. Enthalpy

3 Which one of the following statements is false?

1. Temperature is a state function.
2. Work is a state function.

Change in the state is completely defined when the -initial and final states are specified.
4. Work appears at the boundary of the system.

4 The enthalpy of formation of all elements in their standard state is-

1. Unity
2. Zero
3. Less than zero
4. Different for each element

5 Thermodynamics is not concerned about-

1. Energy changes involved in a chemical reaction
2. The extent to which a chemical reaction proceeds
3. The rate at which a reaction proceeds
4. The feasibility of a chemical reaction

6 In an adiabatic process, no transfer of heat takes place between the system and its surroundings. The correct option for free expansion of an ideal gas under adiabatic condition from the following is -

1. $\mathrm{q}=0, \Delta \mathrm{~T} \neq 0, \mathrm{~W}=0$
2. $\mathrm{q} \neq 0, \Delta \mathrm{~T}=0, \mathrm{~W}=0$
3. $\mathrm{q}=0, \Delta \mathrm{~T}=0, \mathrm{~W}=0$
4. $\mathrm{q}=0, \Delta \mathrm{~T}=0, \mathrm{~W} \neq 0$

7 The amount of heat needed to raise the temperature of
60.0 g of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ would be -
(Molar heat capacity of Al is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)

1. 1.07 J
2. 1.07 kJ
3.106 .7 kJ
3. 100.7 kJ

8 The correct statement among the following is-

1. The presence of reacting species in a covered beaker is an example of an open system.
There is an exchange of energy as well as matter
2. between the system and the surroundings in a closed system.
3. The presence of reactants in a closed vessel made up of copper is an example of a closed system.
The presence of reactants in a thermos flask or any
4. other closed insulated vessel is an example of a closed system.

Thermodynamics ${ }^{\boldsymbol{\prime}}$ Properties AND PROCESS - LEVEL II

9 A Beckmann thermometer is used to measure -

1. High temperature
2. Low temperature
3. Normal temperature
4. All temperatures

10 Work done is maximum in -

1. Isobaric work
2. Isothermal work
3. Isochoric work
4. Adiabatic work

11 When a gas undergoes adiabatic expansion, it gets cooled due to -

1. Loss of energy
2. Fall in pressure
3. Decrease in velocity
4. Increase in energy with work done

Chapter 5 - Thermodynamics (Chemistry)

Classification of System, ExTENSIVE \& INTENSIVE Properties - Level I

12 Which of the following is not a state function?

1.	$\Delta \mathrm{~S}$	2.	$\Delta \mathrm{G}$
3.	$\Delta \mathrm{H}$	4.	$\Delta \mathrm{Q}$

13 If the volume of a gas is reduced to half from its original volume, then the specific heat will-

1.	Reduce to half	2.	Be Doubled
3.	Remain constant	4.	Increase four times

14 Which among the following state functions is an extensive property of the system?

1.	Temperature	2.	Volume
3.	Refractive index	4.	Viscosity

15 Plants and living beings are examples of -

1.	Isolated system	2.	Adiabatic system
3.	Open system	4.	Closed system

16

Assertion (A): \quad Specific heat is an intensive property. Reason (R): \quad Heat capacity is an extensive property.
${ }_{1}$ Both (A) and (R) are true and (R) is the correct - explanation of (A).
2. Both (A) and (R) are true but (R) is not the correct 2. explanation of (A).
3. (\mathbf{A}) is true but (\mathbf{R}) is false.
4. Both (A) and (R) are false.

Classification of System, EXTENSIVE \& INTENSIVE PROPERTIES - LEVEL II

17 Which of the following pairs correctly represents intensive property?

1. Entropy, Gibb's energy
2. Enthalpy, Heat capacity
3. Electrode potential, Vapour pressure
4. Resistance, Conductance

18 For an isolated system with $\Delta \mathrm{U}=0$, the $\Delta \mathrm{S}$ value will be-

1. Positive
2. Negative
3. Zero
4. Not possible to define

ENTHALPY \& INTERNAL ENERGY Level I

19 Assume each reaction is carried out in an open container. For which of the following reactions will $\Delta \mathrm{H}$ be equal to $\Delta \mathrm{U}$?

1. $\mathrm{PCl}_{3}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
2. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
3. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
4. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

20 Combustion of glucose takes place according to the equation,
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$,
$\Delta H=-72 \mathrm{Kcal}$
Energy required for the production of 1.6 g of glucose is -
(Molecular mass of glucose $=180 \mathrm{~g}$)

1. 0.064 kcal
2. 0.64 kcal
3. 6.4 kcal
4. 64 kcal

21 For the reaction:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at
constant temperature, $\Delta \mathrm{H}-\Delta \mathrm{E}$ is:

1.	+ RT	2.	-3 RT
3.	+3 RT	4.	- RT

22 For the following given equations and $\Delta \mathrm{H}^{\circ}$ values, determine the enthalpy of reaction at 298 K for the reaction-
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+6 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CF}_{4}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{g})$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g}) \quad \Delta \mathrm{H}_{1}^{\circ}=-537 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CF}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}^{\circ}=-680 \mathrm{~kJ}$
$2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}_{3}^{\circ}=52 \mathrm{~kJ}$

1. -1165
2. -2486
3. +1165
4. +2486

23

Assertion (A):	is positive for endothermic reactions.
Reason (R):	If the total enthalpy of reactants and products are H_{r} \& Hp respectively, then for an endothermic reaction $\mathrm{H}_{\mathrm{R}}<\mathrm{H}_{\mathrm{P}}$.
Both (A) and (R) are true and (R) is the correct explanation of (A).	
Both (A) and (\mathbf{R}) are true but (\mathbf{R}) is not the correct explanation of (A).	
3. (\mathbf{A}) is true but (\mathbf{R}) is false.	
4. Both (A) and (R) are false.	

24 The bond energies of $\mathrm{C} \equiv \mathrm{C}, \mathrm{C}-\mathrm{H}, \mathrm{H}-\mathrm{H}$, and $\mathrm{C}=\mathrm{C}$ are 198, 98, 103 and 145 kcal respectively.
The enthalpy change of the reaction
$\mathrm{HC} \equiv \mathrm{CH}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$ would be-

1. 48 kcal
2. 96 kcal
3. -40 kcal
4. -152 kcal

25 During complete combustion of one mole of butane, 2658 kJ of heat is released. The thermochemical reaction for this change is -

1. $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ;$
$\Delta_{\mathrm{c}} \mathrm{H}=-2658.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$;
$\Delta_{\mathrm{c}} \mathrm{H}=-1329.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$;
$\Delta_{\mathrm{c}} \mathrm{H}=-2658.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$;
$\Delta_{\mathrm{c}} \mathrm{H}=+2658.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

26
1.

2.

3.

4.

27 Consider the following diagram for a reaction $\mathrm{A} \rightarrow \mathrm{C}$:

Reaction Coordinates

The nature of the reaction is-

1. Exothermic
2. Endothermic
3. Reaction at equilibrium
4. None of the above

28 As an isolated box, equally partitioned, contains two ideal gasses A and B as shown:

When the partition is removed, the gases mix. The changes in enthalpy $(\Delta \mathrm{H})$ and entropy $(\Delta \mathrm{S})$ in the process, respectively, are

1. Zero, positive
2. Zero, negative
3. Positive, zero
4. Negative, zero

29 For the given reaction
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$, the heat of formations of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-188 \mathrm{~kJ} / \mathrm{mol} \&-286 \mathrm{KJ} / \mathrm{mol}$ respectively. The change in the enthalpy of the reaction will be:

1. $-196 \mathrm{~kJ} / \mathrm{mol}$
2. $+196 \mathrm{~kJ} / \mathrm{mol}$
3. $+948 \mathrm{~kJ} / \mathrm{mol}$
4. $-948 \mathrm{~kJ} / \mathrm{mol}$

30 Consider the following diagram for a reaction .

Reaction Coordinate
The nature of the reaction is-

1. Exothermic
2. Endothermic
3. Reaction at equilibrium
4. None of the above

31 Given the following reaction:
$4 \mathrm{H}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})$
The enthalpy change for the reaction is -869.6 kJ . The dissociation energy of the $\mathrm{H}-\mathrm{H}$ bond is:

1. -869.6 kJ
2. +434.8 kJ
3. +217.4 kJ
4. -434.8 kJ
$32 \frac{1}{2} N_{2}(\mathrm{~g})+\frac{1}{2} O_{2(\mathrm{~g})} \rightarrow N O_{(\mathrm{g})} ;$
$\Delta_{\mathrm{r}} H^{\circ}=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$N O_{(g)}+\frac{1}{2} O_{2(g)} \rightarrow N O_{2(g)} ;$
$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-74 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The thermodynamic stability of $\mathrm{NO}_{(\mathrm{g})}$ based on the above data is-
5. Less than $\mathrm{NO}_{2(\mathrm{~g})}$
6. More than $\mathrm{NO}_{2(\mathrm{~g})}$
7. Equal to $\mathrm{NO}_{2(\mathrm{~g})}$
8. Insufficient data

33 The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}$ (s) with dioxygen, was carried out in a bomb calorimeter, and $\Delta \mathrm{U}$ was found to be $-742.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K .
$\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The enthalpy change for the reaction at 298 K would be -

1. $-741.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $+753.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $+772.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $-845.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$

34 The $\Delta \mathrm{H}$ for vaporization of a liquid is $20 \mathrm{~kJ} / \mathrm{mol}$. Assuming ideal behaviour, the change in internal energy for the vaporization of 1 mol of the liquid at $60^{\circ} \mathrm{C}$ and 1 bar is close to:

1. $13.2 \mathrm{~kJ} / \mathrm{mol}$
2. $17.2 \mathrm{~kJ} / \mathrm{mol}$
3. $19.5 \mathrm{~kJ} / \mathrm{mol}$
4. $20.0 \mathrm{~kJ} / \mathrm{mol}$

35 Change in enthalpy for reaction,

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

If the heat of formation of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -188 and $-286 \mathrm{~kJ} / \mathrm{mol}$ respectively is -

1. $-196 \mathrm{~kJ} / \mathrm{mol}$
2. $+196 \mathrm{~kJ} / \mathrm{mol}$
3. $+948 \mathrm{~kJ} / \mathrm{mol}$
4. $-948 \mathrm{~kJ} / \mathrm{mol}$

36 For the reaction, $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$, at $298 \mathrm{~K} \Delta \mathrm{H}$ is $164 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The $\Delta \mathrm{E}$ of the reaction is-

1. $166.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $141.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $104.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $-169 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$37 \Delta_{\mathrm{f}} \mathrm{U}^{\ominus}$ of formation of $\mathrm{CH}_{4}(\mathrm{~g})$ at certain temperature is $-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of $\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}$ is-
5. Zero
6. $<\Delta_{\mathrm{f}} \mathrm{U}^{\ominus}$
7. $>\Delta_{\mathrm{f}} \mathrm{U}^{\ominus}$
8. Equal to $\Delta_{\mathrm{f}} \mathrm{U}^{\ominus}$

ENTHALPY \& INTERNAL ENERGY Level II

38 An ideal gas absorbs 2000 cal of heat from a heat reservoir and does mechanical work equivalent to 4200 J . The change in internal energy of the gas is-

1. 3000 cal
2. 2000 cal
3. 1500 cal
4. 1000 cal
$39 \Delta \mathrm{U}^{\circ}$ for combustion of methane is $-\mathrm{x} \mathrm{kJ} \mathrm{mol}{ }^{-1}$.
The value of $\Delta \mathrm{H}^{\circ}$ for the same reaction would be -
5. $=\Delta U^{\circ}$
6. $>\Delta U^{\circ}$
7. $<\Delta U^{\circ}$
8. $=0$

40

Assertion (A):	$\mathrm{C}_{\text {diamond }} \rightarrow \mathrm{C}_{\text {graphite }} \Delta \mathrm{H}$ and $\Delta \mathrm{U}$ are the same for this reaction.
Reason (R):	Entropy increases during the conversion of diamond to graphite.
1. $\begin{array}{l}\text { Both (A) and }(\mathbf{R}) \text { are true and }(\mathbf{R}) \text { is the correct } \\ \text { explanation of }(\mathbf{A}) .\end{array}$	
2. $\begin{aligned} & \text { Both }(\mathbf{A}) \text { and }(\mathbf{R}) \text { are true but }(\mathbf{R}) \text { is not the correct } \\ & \text { explanation of }(\mathbf{A}) \text {. }\end{aligned}$	
3. (A) is true but (R) is false.	
4. Both (A) and (R) are false.	

41 The difference in ΔH and ΔU for combustion of benzoic acid at 300 K is equal to-

1. -1.247 kJ
2. +1.247 kJ
3. -1.247 J
4. +1.247 J

42 The standard enthalpy of vaporisation $\Delta_{\text {vap }} H^{\circ}$ for water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The internal energy of vaporisation of water at $100^{\circ} \mathrm{C}$ (in $\mathrm{kJ} \mathrm{mol}^{-1)}$ is-
(Assume water vapour to behave like an ideal gas)

1. +37.56
2. -43.76
3. +43.76
4. +40.66

43 The lattice energy of NaCl is $780 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The FIRST LAW OF THERMODYNAMICS enthalpy of hydration of $\mathrm{Na}^{+}(\mathrm{g})$ and $\mathrm{Cl}^{-}(\mathrm{g})$ ions are -406 $\mathrm{kJ} \mathrm{mol}^{-1}$ and $-364 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy of the solution of $\mathrm{NaCl}(\mathrm{s})$ is-

1. $23 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $-10 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $-82 \mathrm{~kJ} \mathrm{~mol}^{-1}$
442.1 g of Fe combines with S evolving 3.77 kJ . The heat of formation of FeS in $\mathrm{kJ} /$ mole is-
5. -3.77
6. -1.79
7. -100.5
8. None of the above

45 Consider the reactions given below. On the basis of these reactions find out which of the
the algebraic relationships is correct?
(i) $\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$;
$\Delta H_{r}=x \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $\mathrm{C}($ graphite $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}$;
$\Delta H_{r}=y \mathrm{~kJ} \mathrm{~mol}^{-1}$

1. $\mathrm{x}=\mathrm{y}$
2. $x=2 y$
3. $x>y$
4. $x<y$

CP \& Cv - Level I

46 The factor $\left(\frac{\partial Q}{\partial T}\right)_{P}-\left(\frac{\partial Q}{\partial T}\right)_{V}$ is equal to :

1. γ
2. R
3. $\frac{R}{M}$
4. $\Delta \mathrm{nRT}$

47 Two moles of an ideal gas is heated at a constant pressure of one atmosphere from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. If $\mathrm{C}_{\mathrm{v}, \mathrm{m}}=20+10^{-2} \mathrm{~T} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, then q and $\triangle \mathrm{U}$ for the process are respectively:

1. $6362.8 \mathrm{~J}, 4700 \mathrm{~J}$
2. $3037.2 \mathrm{~J}, 4700 \mathrm{~J}$
3. $7062.8 \mathrm{~J}, 5400 \mathrm{~J}$
4. $3181.4 \mathrm{~J}, 2350 \mathrm{~J}$

48	
Assertion (A):	Total enthalpy change of a multistep process is the sum of $\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+$ \qquad
Reason (R):	When heat is absorbed by the system, the sign of q is taken to be negative.
1. $\begin{array}{l}\text { Both } \mathbf{(A)} \text { and }(\mathbf{R}) \text { are true and }(\mathbf{R}) \text { is the correct } \\ \text { explanation of }(\mathbf{A}) .\end{array}$	
2. Both (A) and (R) are true but (R) is not the correct explanation of (A).	
3. (A) is true but (R) is false.	
4. Both (A) and (R) are false.	

49 A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs 208 J of heat. The values of q and w for the process will be-
$(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K})(\ln 7.5=2.01)$

1.	$q=+208 \mathrm{~J}, \mathrm{w}=-208 \mathrm{~J}$	2.	$\mathrm{q}=-208 \mathrm{~J}, \mathrm{w}=-208 \mathrm{~J}$
3.	$\mathrm{q}=-208 \mathrm{~J}, \mathrm{w}=+208 \mathrm{~J}$	4.	$\mathrm{q}=+208 \mathrm{~J}, \mathrm{w}=+208 \mathrm{~J}$

50701 J of heat is absorbed by a system and 394 J of work is done by the system. The change in internal energy for the process is-

1.	307 J	2.	-307 J
3.	1095 J	4.	-701 J

51

Assertion (A):	Work done in an irreversible isothermal process at constant volume is zero.
Reason (R):	Work is assigned a negative sign during expansion and is assigned a positive sign during compression.
1.	Both $\mathbf{(A)}$ and (\mathbf{R}) are true and (\mathbf{R}) is the correct explanation of (\mathbf{A}).
2.	Both $\mathbf{(A)}$ and (\mathbf{R}) are true but (R) is not the correct explanation of (\mathbf{A}).
3.	(A) is true but $\mathbf{(R)}$ is false.
4.	Both $\mathbf{(A)}$ and $\mathbf{(R)}$ are false.

52 An ideal gas expands isothermally from $10^{-3} \mathrm{~m}^{3}$ to $10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $10^{5} \mathrm{Nm}^{-2}$. The work done by the gas is:

1.	+270 kJ	2.	-900 J
3.	+900 kJ	4.	-900 kJ

53 The work done in ergs for the reversible expansion of one mole of an ideal gas from a volume of 10 liters to 20 liters at $25^{\circ} \mathrm{C}$ is -

1. $-2.303 \times 298 \times 0.082 \log 2$
2. $-298 \times 10^{7} \times 8.31 \times 2.303 \log 2$
3. $2.303 \times 298 \times 0.082 \log 0.5$
4. $-8.31 \times 10^{7} \times 298-2.303 \log 0.5$

54 The pressure-volume work for an ideal gas can be calculated by using the expression $W=\int_{V_{i}}^{V_{f}} p_{\text {ex }} d V$. The work can also be calculated from the pV -plot by using the area under the curve within the specified limits. An ideal gas is compressed (a) reversibly or (b) irreversibly from volume V_{i} to V_{f}. The correct option is -

1. $\mathrm{W}($ reversible $)=\mathrm{W}$ (irreversible)
2. W (reversible) $<\mathrm{W}$ (irreversible)
3. W (reversible $)>\mathrm{W}$ (irreversible)
4. $\mathrm{W}($ reversible $)=\mathrm{W}($ irreversible $)+\mathrm{p}_{\mathrm{ex}} . \Delta \mathrm{V}$

55 For the graph given below, it can be concluded that work done during the process shown will be-

56 Which of the following is correct for isothermal expansion of an ideal gas -

1. $\mathrm{W}_{\mathrm{rev}}=\mathrm{W}_{\text {irr }}$
2. $\mathrm{W}_{\mathrm{rev}}+\mathrm{W}_{\mathrm{irr}}=0$
3. $\mathrm{W}_{\text {rev }}>\mathrm{W}_{\text {irr }}$
4. $q_{\text {rev }}=q_{\text {irr }}$

First Law of Thermodynamics Level II

57 To calculate the amount of work done in joules during reversible isothermal expansion of an ideal gas, the volume must be expressed in:

1.	$\mathrm{~m}^{3}$ only	2.	dm^{3} only
3.	$\mathrm{~cm}^{3}$ only	4.	All of the above

58 Consider the following graph.

The work done shown by the above-mentioned graph is-

1.	Positive	2.	Negative
3.	Zero	4.	Cannot be determined

59 When $1 \mathrm{~g} \mathrm{H}_{2}$ gas at S.T.P is expanded to twice its initial volume, then the work done is -

1. 22.4 L atm
2. 5.6 L atm
3. 11.2 L atm
4. 44.8 L atm

An ideal gas is expanded irreversibly against 10 bar pressure from 20 litres to 30 litres. Calculate 'w' if the process is isoenthalpic.

1.	0	2.	+100 J
3.	-100 J	4.	-10 kJ

Thermochemistry - Level I

61 The standard enthalpy of combustion at $25^{\circ} \mathrm{C}$ of hydrogen, cyclohexene $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$, and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are $-241,-3800$ and $-3920 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Calculate the standard enthalpy of hydrogenation of cyclohexene.

1.	$-131 \mathrm{~kJ} \mathrm{~mol}^{-1}$	2.	$-155 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3.	$-167 \mathrm{~kJ} \mathrm{~mol}^{-1}$	4.	$-121 \mathrm{~kJ} \mathrm{~mol}^{-1}$

62 The enthalpy of sublimation of a substance is equal to-

1. Enthalpy of fusion + Enthalpy of vaporisation
2. Enthalpy of fusion
3. Enthalpy of vaporisation
4. Twice the enthalpy of vaporisation

63

$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} ; \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The standard enthalpy of formation of NH_{3} gas in the above reaction would be-

1.	$-92.4 \mathrm{~J}(\mathrm{~mol})^{-1}$	2.	$-46.2 \mathrm{~kJ}(\mathrm{~mol})^{-1}$
3.	$+46.2 \mathrm{~J}(\mathrm{~mol})^{-1}$	4.	$+92.4 \mathrm{~kJ}(\mathrm{~mol})^{-1}$

64 From the following bond energies:
$\mathrm{H}-\mathrm{H}$ bond energy: $431.37 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}=\mathrm{C}$ bond energy: $606.10 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C - C bond energy: $336.49 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C-H bond energy: $410.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy for the reaction,

will be:

1.	$1523.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$	2.	$-243.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3.	$-120.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$	4.	$553.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

65 Consider the following reaction,
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}, \Delta \mathrm{H}=-298.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}, \Delta \mathrm{H}=-98.7 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta \mathrm{H}=-130.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-287.3 \mathrm{~kJ} \mathrm{~mole}^{-1}$
the enthalpy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be-

1.	$-814.4 \mathrm{~kJ} \mathrm{~mole}^{-1}$	2.	$+814.4 \mathrm{~kJ} \mathrm{~mole}^{-1}$
3.	$-650.3 \mathrm{~kJ} \mathrm{~mole}^{-1}$	4.	$-433.7 \mathrm{~kJ} \mathrm{~mole}^{-1}$

$66 \Delta \mathrm{H}_{\mathrm{f}}^{0}(298 \mathrm{~K})$ of methanol is given by the chemical equation -

1. $\mathrm{C}($ diamond $)+\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
2. $\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
3. $\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
4. C (graphite) $+\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$

67

Assertion (A):	Combustion of all organic compounds is an exothermic reaction.
Reason (R):	The enthalpies of all elements in their standard state are zero.
1.	Both $\mathbf{(A)}$ and $\mathbf{(R)}$ are true and (\mathbf{R}) is the correct explanation of (\mathbf{A}).
2.	Both (\mathbf{A}) and (\mathbf{R}) are true but (\mathbf{R}) is not the correct explanation of (\mathbf{A}).
3.	(\mathbf{A}) is true but $\mathbf{(R)}$ is false.
4.	(\mathbf{A}) is false but (\mathbf{R}) is true.

68 The enthalpy of formation of $\mathrm{CO}_{(\mathrm{g})}, \mathrm{CO}_{2(\mathrm{~g})}$, $\mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}$, and $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ are
$-110 \mathrm{~kJ} \mathrm{~mol}^{-1},-393 \mathrm{~kJ} \mathrm{~mol}^{-1}, 81 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $9.7 \mathrm{~kJ}^{2}$ mol^{-1} respectively.
The value of $\Delta_{\mathrm{r}} \mathrm{H}$ for the reaction would be-
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+3 \mathrm{CO}_{2(\mathrm{~g})}$

1. $-777.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $+777.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $+824.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $-345.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$

69 The enthalpy of combustion of carbon to CO_{2} is -
$393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The amount of heat released upon formation of 35.2 g of CO_{2} from carbon and dioxygen gas would be-

1. $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $-314.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $+314.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $-320.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$

70 Which of the following is not an endothermic reaction?

1. Combustion of methane
2. Decomposition of water
3. Dehydrogenation of ethane or ethylene
4. Conversion of graphite to diamond

71 When 4 g of iron is burnt to ferric oxide at a constant pressure, 29.28 kJ of heat is evolved.
The enthalpy of formation of ferric oxide will be-
(At. mass of $\mathrm{Fe}=56$)?

1. -81.98 kJ
2. -819.8 kJ
3. -40.99 kJ
4. +819.8 kJ
$72 \Delta_{\text {vap }} \mathrm{H}^{\circ}\left(\mathrm{CCl}_{4}\right)=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{CCl}_{4}\right)=-135.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{a}} \mathrm{H}^{\circ}(\mathrm{C})=715.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{a}} \mathrm{H}^{\circ}\left(\mathrm{Cl}_{2}\right)=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The enthalpy change for the reaction $\mathrm{CCl}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{Cl}(\mathrm{g})$ would be -
5. $326 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6. $1304 \mathrm{~kJ} \mathrm{~mol}^{-1}$
7. $-328 \mathrm{~kJ} \mathrm{~mol}^{-1}$
8. $-1304 \mathrm{~kJ} \mathrm{~mol}^{-1}$

73 The enthalpy of combustion of methane, graphite, and dihydrogen at 298 K are,
$-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1},-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-}$ ${ }^{1}$ respectively.
The enthalpy of formation of $\mathrm{CH}_{4}(\mathrm{~g})$ is-

1. $-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $-52.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $+52.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$

74 The standard enthalpy of the formation of $\mathrm{CH}_{3} \mathrm{OH}_{(1)}$ from the following data is:

$\mathrm{CH}_{3} \mathrm{OH}_{(l)}+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}_{(l)} ; \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$		
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{c}} \mathrm{H}^{\circ}=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$		
$\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} ; \Delta_{\mathrm{f}} \mathrm{H}^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$		
1.	$-239 \mathrm{~kJ} \mathrm{~mol}^{-1}$	2.
3.	$-47 \mathrm{~kJ} \mathrm{~mol}^{-1}$	4.

ThERMOCHEMISTRY - LevEl II

75 Determine the enthalpy of formation for $\mathrm{H}_{2} \mathrm{O}_{2}(l)$, using the following enthalpies of reaction :
$\mathrm{N}_{2} \mathrm{H}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \triangle \mathrm{H}_{1}^{0}=-818$ $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \quad \triangle \mathrm{H}_{2}^{0}=-622$
$\mathrm{kJ} / \mathrm{mol}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \triangle \mathrm{H}_{3}^{0}=-285 \mathrm{~kJ} / \mathrm{mol}$

1. $-383 \mathrm{~kJ} / \mathrm{mol}$
2. $-187 \mathrm{~kJ} / \mathrm{mol}$
3. $-49 \mathrm{~kJ} / \mathrm{mol}$
4. None of the above

76 The bond energy of $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$ is $430 \mathrm{~kJ} \mathrm{~mol}^{-}$ ${ }^{1}$ and $240 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively and ΔH_{f} for HCl is -90 kJ mol^{-1}. The bond enthalpy of HCl is:

1. $290 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $380 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $425 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$

77

Assertion (A):	Combustion is an exothermic process.
Reason (R):	Combustion is a spontaneous process.
1.Both (A) and (\mathbf{R}) are true and (\mathbf{R}) is the correct explanation of (\mathbf{A}).	
Both (A) and (R) are true but (R) is not the correct explanation of (A).	
3. (A) is true but (R) is false.	
Both (A) and) ar

78 At standard conditions, if the change in the enthalpy for the following reaction is $-109 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$ and the bond energy of H_{2} and Br_{2} is $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $192 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, what is the bond energy (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of HBr ?

1.	368	2.	736
3.	518	4.	259

79 The enthalpies of elements in their standard states are taken as zero. The enthalpy of formation of a compound is-

1.	Generally negative	2.	Always positive
3.	Zero	4.	Never negative

80 The standard heat of combustion of propane is $2220.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The standard heat of vaporisation of liquid water is $44.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy change for the reaction is-
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

1.	-2220.1 kJ	2.	-2044.1 kJ
3.	-2396.1 kJ	4.	-2176.1 kJ

Hess's Law - Level I

81 The enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and propene (g) are $-393.5,-285.8$ and $20.42 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy change for the combustion of cyclopropane at 298 K will be -
(The enthalpy of isomerisation of cyclopropane to propene is $-33.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.)

1.	$-1021.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$	2.	$-2091.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3.	$-5021.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$	4.	$-3141.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$

82 The enthalpies of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ are 1596 kJ and -1134 kJ , respectively. $\Delta \mathrm{H}$ for the reaction $2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$ is -

1.	-1365 kJ	2.	2730 kJ
3.	-2730 kJ	4.	-462 kJ

834.8 g of C(diamond) on complete combustion evolves 1584 kJ of heat. The standard heat of the formation of gaseous carbon is $725 \mathrm{~kJ} / \mathrm{mol}$. The energy required
for the given process will be:
(i) C (graphite) $\rightarrow \mathrm{C}$ (gas)
(ii) C (diamond) $\rightarrow \mathrm{C}$ (gas)

1.	725,727	2.	727,725
3.	725,723	4.	None of the above

2ND \& 3RD LaW OF Thermodynamics - Level I

84 For the reaction
$\mathrm{CH}_{3} \mathrm{COOH}(l)+2 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
at $25^{\circ} \mathrm{C}$ and 1 atm . pressure, $\Delta \mathrm{H}=-874 \mathrm{~kJ}$. The change in internal energy $(\Delta \mathrm{E})$ is -

1. -874 kJ
2. -971.53 kJ
3. +971.53 kJ
4. +874 kJ

85 The maximum work done in expanding $16 \mathrm{~g} \mathrm{O}_{2}$ isothermally at 300 K and occupying a volume of 5 dm^{3} until the volume becomes $25 \mathrm{dm}^{3}$ is-

1. $-2.01 \times 10^{3} \mathrm{~J}$
2. $2.01 \times 10^{-3} \mathrm{~J}$
3. $+2.81 \times 10^{3} \mathrm{~J}$
4. $+2.01 \times 10^{-6} \mathrm{~J}$

Spontaneity \& Entropy - Level I

86 The unit of entropy is -

1. $\mathrm{J} \mathrm{mol}^{-1}$
2. $\mathrm{JK} \mathrm{mol}^{-1}$
3. $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
4. $\mathrm{J}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

87 The enthalpy and entropy change for the reaction :
$\mathrm{Br}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{g})$
are $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $105 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively.
The temperature at which the reaction will be in equilibrium is :

1. 285.7 K
2. 273.4 K
3. 450.9 K
4. 300.1 K

Chapter 5 - Thermodynamics (Chemistry)

88 Which of the following is not correct?

1. $\Delta \mathrm{G}$ is zero for a reversible reaction.
2. $\Delta \mathrm{G}$ is positive for a spontaneous reaction.
3. $\Delta \mathrm{G}$ is negative for a spontaneous reaction.
4. $\Delta \mathrm{G}$ is positive for a non-spontaneous reaction.

89

| Assertion (A): | A liquid crystallizes into a solid and is
 accompanied by a decrease in entropy. |
| :--- | :--- | :--- |
| Reason (R): | In crystals, molecules organize in an
 ordered manner. |
| 1. | Both (A) and (R) are true and (R) is the correct
 explanation of (A). |
| 2. | Both (A) and (R) are true but (R) is not the correct
 explanation of (A). |
| 3. | (A) is true but (R) is false. |
| 4. | (A) is false but (R) is true. |

90 Entropy decreases during:

1. Crystallization of sucrose from solution
2. Rusting of iron
3. Melting of ice
4. Vaporization of camphor

91 The entropy change in the fusion of one mole of a solid melting at $27^{\circ} \mathrm{C}$ is -
(the latent heat of fusion is $2930 \mathrm{~J} \mathrm{~mol}^{-1}$)

1. $9.77 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. $19.73 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3. $2930 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4. $108.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

92 At a temperature of 300 K , what is the entropy change for the reaction given below?
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Standard entropies of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 126.6, 201.20 and $68.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.

1. $-318.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. $318.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3. $31.84 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4. None of the above

93 Match the following process with entropy change

Reaction	Entropy change
A. A liquid vaporizes	$1 . \Delta \mathrm{S}=0$
B. Reaction is non-spontaneous at all	2.
temperatures and $\Delta \mathrm{H}$ is positive	$\Delta \mathrm{S}=$ positive
C. Reversible expansion of an ideal gas	. $\Delta \mathrm{S}=$ negative

Codes

	A	B	C
1.	2	3	1
2.	1	2	3
3.	1	3	2
4.	3	2	1

94 For the reaction, $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$, the value of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are respectively -

1. $\Delta \mathrm{H}=0, \Delta \mathrm{~S}=-\mathrm{ve}$
2. $\Delta \mathrm{H}=0, \Delta \mathrm{~S}=0$
3. $\Delta \mathrm{H}=-\mathrm{ve}, \Delta \mathrm{S}=-\mathrm{ve}$
4. $\Delta \mathrm{H}=+\mathrm{ve}, \Delta \mathrm{S}=+$ ve

95 Match the following parameters with a description for spontaneity.

Δ (Parameters) $\Delta r H^{\ominus}$ $\Delta r S^{\ominus} \Delta r G^{\ominus}$	Description
A. +-+	1. Non-spontaneous at high temperature
B. -+ at high T	2. Spontaneous at all temperatures
C. -+-	3. Non-spontaneous at all temperatures

Codes

	A	B	C
1.	3	1	2
2.	1	2	3
3.	1	3	2
4.	3	2	1

96 Which of the following thermodynamic quantities is an outcome of the second law of thermodynamics?

1. Work
2. Enthalpy
3. Internal energy
4. Entropy

$$
\begin{gathered}
97 \mathrm{H}_{(a q)}^{+}+\mathrm{OH}^{-}{ }_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} \mathrm{S}^{\circ}(298 \mathrm{~K}) \text { in } \\
-10.7 \mathrm{JK}^{-1} \quad+70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{gathered}
$$

Standard entropy change for the above reaction is:

1. $60.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. $80.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3. $-70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4. $+10.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

98 Which of the following conditions will always lead to a non-spontaneous change?

1. Positive ΔH and positive ΔS
2. Negative ΔH and negative ΔS
3. Positive ΔH and negative ΔS
4. Negative ΔH and positive ΔP

99 The entropy change in the isothermal reversible expansion of 2 moles of an ideal gas from 10 to 100 L at 300 K is

1. $42.3 \mathrm{~J} \mathrm{~K}^{-1}$
2. $35.8 \mathrm{~J} \mathrm{~K}^{-1}$
3. 38. $3 \mathrm{~J} \mathrm{~K}^{-1}$
1. $32.3 \mathrm{~J} \mathrm{~K}^{-1}$

100 Change in entropy is negative for:

1. Bromine (l) \rightarrow Bromine (g)
2. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
3. $\mathrm{N}_{2}(\mathrm{~g}, 10 \mathrm{~atm}) \rightarrow \mathrm{N}_{2}(\mathrm{~g}, 1 \mathrm{~atm})$
4. $\mathrm{Fe}(1 \mathrm{~mol}, 400 \mathrm{~K}) \rightarrow \mathrm{Fe}(1 \mathrm{~mol}, 300 \mathrm{~K})$

101 The occurrence of a reaction is impossible if -

1. $\Delta \mathrm{H}$ is $+\mathrm{ve} ; \Delta \mathrm{S}$ is also + ve but $\Delta \mathrm{H}<\mathrm{T} \Delta \mathrm{S}$
2. $\Delta \mathrm{H}$ is $-\mathrm{ve} ; \Delta \mathrm{S}$ is also - ve but $\Delta \mathrm{H}>\mathrm{T} \Delta \mathrm{S}$
3. $\Delta \mathrm{H}$ is $-\mathrm{ve} ; \Delta \mathrm{S}$ is +ve
4. $\Delta \mathrm{H}$ is $+\mathrm{ve} ; \Delta \mathrm{S}$ is -ve

102 For exothermic reaction to be spontaneous ($\Delta \mathrm{S}$ =negative) temperature must be -

1. High
2. Zero
3. Constant
4. Low

1031 mole of an ideal gas at $25^{\circ} \mathrm{C}$ is subjected to expand reversibly ten times of its initial volume. The change in entropy of expansion is:

1. $19.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. $16.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3. $22.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4. None of the above

104 The molar entropy of the vapourization of acetic acid is $14.4 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ at its boiling point $118^{\circ} \mathrm{C}$. The latent heat of vapourization of acetic acid is-

1. $49 \mathrm{cal} \mathrm{g}^{-1}$
2. $64 \mathrm{cal} \mathrm{g}^{-1}$
3. $94 \mathrm{cal} \mathrm{g}^{-1}$
4. $84 \mathrm{cal} \mathrm{g}^{-1}$

105 Assertion: Dissolution of sugar in water proceeds via an increase in entropy.
Reason: Entropy decreases, when an egg is boiled hard.

1. Both assertion \& reason are true and the reason is the correct explanation of the assertion.
2. Both assertion \& reason are true but the reason is not the correct explanation of the assertion.
3. Assertion is a true statement but reason is false.
4. Both assertion and reason are false statements.

106 For the conversion $\mathrm{C}_{\text {(graphite) }} \rightarrow \mathrm{C}_{\text {(diamond) }}$ the ΔS is:

1. Zero
2. Positive
3. Negative
4. Unknown

SPONTANEITY \& ENTROPY - LEVEL II

107 Which of the following statements is correct for the spontaneous adsorption of a gas?

1. $\Delta \mathrm{S}$ is negative and therefore, $\Delta \mathrm{H}$ should be highly positive
2. $\Delta \mathrm{S}$ is negative and therefore, $\Delta \mathrm{H}$ should be highly
3. negative
4. $\Delta \mathrm{S}$ is positive and therefore, $\Delta \mathrm{H}$ should be negative
$4-\Delta \mathrm{S}$ is positive and therefore, $\Delta \mathrm{H}$ should also be
highly positive

Chapter 5 - Thermodynamics (Chemistry)

108 For the reaction, $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$, the correct option is:

1. $\Delta_{\mathrm{r}} \mathrm{H}>0$ and $\Delta_{\mathrm{r}} \mathrm{S}<0$
2. $\Delta_{\mathrm{r}} \mathrm{H}<0$ and $\Delta_{\mathrm{r}} \mathrm{S}>0$
3. $\Delta_{\mathrm{r}} \mathrm{H}<0$ and $\Delta_{\mathrm{r}} \mathrm{S}<0$
4. $\Delta_{\mathrm{r}} \mathrm{H}>0$ and $\Delta_{\mathrm{r}} \mathrm{S}>0$

109 The entropy change in the conversion of one mole of liquid water at 373 K to vapour at the same temperature would be: (Latent heat of vaporization of water, $\left.\Delta H_{\text {vap }}=2.257 \mathrm{~kJ} / \mathrm{g}\right)$

1. $105.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. $107.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3. $108.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4. $109.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

110 The entropy change can be calculated by using the expression $\Delta \mathrm{S}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{T}}$. When water freezes in a glass beaker, the correct statement among the following is:

| 1. | $\Delta \mathrm{S}$ (system) decreases but $\Delta \mathrm{S}$ (surroundings)
 remains the same |
| :--- | :--- | :--- |
| 2. | S (system) increases but $\Delta \mathrm{S}$ (surroundings)
 decreases |
| 3. | $\Delta \mathrm{S}$ (system) decreases but $\Delta \mathrm{S}$ (surroundings)
 increases |
| 4. | S (system) decreases but $\Delta \mathrm{S}$ (surroundings) also
 decreases |

$$
111 \quad \text { For } \quad A \rightarrow B, \quad \Delta H=4 \text { kcal mol }^{-1} \text {, }
$$

$\Delta S=10 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$, the reaction is spontaneous when the temperature is:

1. 400 K
2. 300 K
3. 500 K
4. None of the above

112

Assertion (A):	Spontaneous process is an irreversible process and may be reversed by some external agency.
Reason (R):	A decrease in enthalpy is a contributing factor to spontaneity.

${ }_{1}$ Both (A) and (R) are true and (R) is the correct explanation of (A).
2. Both (A) and (R) are true but (R) is not the correct explanation of (A).
3. (A) is true but (R) is false.
4. (A) is false but (\mathbf{R}) is true.

113 Entropy decreases in which of the following reactions?

1. Boiling of egg
2. Combustion of benzene at $127^{\circ} \mathrm{C}$
3. Stretching of rubber band
4. Dissolution of sugar in water

114 For the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{q}(\mathrm{kJ} / \mathrm{mol})$, entropy change is positive. The reaction will be

1. Possible only at high temperature
2. Possible only at low temperature
3. Not possible at any temperature
4. Possible at any temperature

115 An enthalpy diagram for a particular reaction is given below:

Reaction coordinate

The correct statement among the following is-

1. Reaction is spontaneous
2. Reaction is non-spontaneous
3. Cannot predict spontaneity of the reaction from the graph given above
4. None of the above

116 The entropy change in the surroundings when 1.00 mol of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ is formed under standard conditions is-
$\Delta_{\mathrm{f}} \mathrm{H}^{\theta}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$

1. $952.5 \mathrm{~J} \mathrm{~mol}^{-1}$
2. $979.7 \mathrm{~J} \mathrm{~mol}^{-1}$
3. $949.7 \mathrm{~J} \mathrm{~mol}^{-1}$
4. $959.7 \mathrm{~J} \mathrm{~mol}^{-1}$

Gibbs Energy Change - Level I

117 The values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the reaction,
$\mathrm{C}_{\text {(graphite) }}+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$ are 170 kJ and $170 \mathrm{JK}^{-1}$, respectively. This reaction will be spontaneous at:

1. 710 K
2. 910 K
3. 1110 K
4. 510 K

118 'The free energy change due to a reaction is zero when-

1. The reactants are initially mixed.
2. A catalyst is added
3. The system is at equilibrium
4. The reactants are completely consumed

119 Which of the following statements is correct for a reversible process in a state of equilibrium?

1. $\Delta \mathrm{G}=-2.30 \mathrm{RT} \log \mathrm{K}$
2. $\Delta \mathrm{G}=2.30 \mathrm{RT} \log \mathrm{K}$
3. $\Delta \mathrm{G}^{\mathrm{o}}=-2.30$ RT $\log \mathrm{K}$
4. $\Delta \mathrm{G}^{\mathrm{o}}=2.30 \mathrm{RT} \log \mathrm{K}$

120 Hydrolysis of sucrose is given by the following reaction
Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ Glucose + Fructose
If the equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ is 2×10^{13} at 300 K , the value of $\Delta_{r} G^{\ominus}$ at the same temperature will be:

1. $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
2. $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
3. $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$
4. $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$

121 For a given reaction, $\Delta \mathrm{H}=35.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}=$ $83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The reaction is spontaneous at:
(Assume that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not vary with temperature)

1. $\mathrm{T}<425 \mathrm{~K}$
2. $\mathrm{T}>425 \mathrm{~K}$
3. All temperatures
4. $\mathrm{T}>298 \mathrm{~K}$

122 The equilibrium constant for a reaction is 10 . The value of $\Delta \mathrm{G}^{\circ}$ will be-
($\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} ; \mathrm{T}=300 \mathrm{~K}$)

1. $-5.74 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $-5.74 \mathrm{~J} \mathrm{~mol}^{-1}$
$3 .+4.57 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $-57.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$

123 Given the Gibbs free energy change, $\Delta G^{\circ}=+63.3 \mathrm{~kJ}$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q)$
$K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(s)$ in water at $25^{\circ} \mathrm{C}$ is $\left(\mathrm{R}=8.314 \mathrm{JK}^{-}\right.$
${ }^{1} \mathrm{~mol}^{-1}$)

1. 3.2×10^{26}
2. 8.0×10^{-12}
3. 2.9×10^{-3}
4. 7.9×10^{-2}

124 The free energy change $\left(\Delta G^{\circ}\right)$ is negative when -

1. The surroundings do no electrical work on the system.
2. The surroundings do electrical work on the system.
3. The system does electrical work on the surroundings.
4. The system does no electrical work on the surroundings.

125

The standard free energies of formation(in $\mathrm{kJ} / \mathrm{mol}$) at 298 K are -237.2, -394.4, and -8.2 for $\mathrm{H}_{2} \mathrm{O}(1), \mathrm{CO}_{2}(\mathrm{~g})$, and pentane (g), respectively. The value of $\mathrm{E}_{\text {cell }}$ for the pentane-oxygen fuel cell is:

1. 1.968 V
2. 2.0968 V
3. 1.0968 V
4. 0.0968 V

Gibbs Energy Change - Level II

126 In the reaction, $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ both are positive. The condition under which the reaction would not be spontaneous is -

1. $\Delta H>T \Delta S$
2. $\Delta \mathrm{S}=\Delta \mathrm{H} / \mathrm{T}$
3. $\Delta H=T \Delta S$
4. All of the above

127 Calculate $\triangle_{\mathrm{f}} \mathrm{H}^{\circ}$ (in $\mathrm{kJ} / \mathrm{mol}$) for $\mathrm{Cr}_{2} \mathrm{O}_{3}$ from the
$\triangle_{r} G^{\circ}$ and the S° values provided at $27^{\circ} \mathrm{C}$
$4 \mathrm{Cr}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) ;$
$\triangle_{\mathrm{r}} \mathrm{G}^{\circ}=-2093.4 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{K}) \mathrm{mol}: \mathrm{S}^{\circ}(\mathrm{Cr}) \mathrm{s}=$,24 ;
$\mathrm{S}^{\circ}\left(\mathrm{O}_{2},\right) \mathrm{g}=205 ; \quad \mathrm{S}^{\circ}\left(\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{~s}=81\right.$

1. $-2258.1 \mathrm{~kJ} / \mathrm{mol}$
2. $-1129.05 \mathrm{~kJ} / \mathrm{mol}$
3. $-964.35 \mathrm{~kJ} / \mathrm{mol}$
4. None of the above

128 For the reaction $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow 2 \mathrm{D}(\mathrm{g}) ; \Delta \mathrm{U}^{\circ}=-$ 10.5 kJ and $\Delta \mathrm{S}^{\circ}=-44.1 \mathrm{~J} \mathrm{~K}^{-1}$, the value of $\Delta \mathrm{G}^{\circ}$ for the given reaction would be-

1. 1.6 J
2. -0.16 kJ
3. 0.16 kJ
4. 1.6 kJ

129 Equilibrium is represented by -

1. $\Delta \mathrm{H}=0$
2. $\Delta \mathrm{G}_{\text {Total }}=0$
3. $\Delta \mathrm{S}_{\text {Total }}=0$
4. $\Delta \mathrm{E}=0$
