DEFINITION, RATE CONSTANT, RATE LAW - LEVEL I

1 For the reaction

 $2A + B \rightarrow 3C + D$

An incorrect expression for the rate of reaction is:

- $egin{array}{lll} 1. & -rac{d[C]}{3} \ dt \ 2. & -rac{d[B]}{dt} \ 3. \ rac{d[D]}{dt} \ dt \end{array}$

- 4. $-\frac{d[A]}{2dt}$

The following reaction was carried out at 300 K. 2 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ The rate of formation of SO_3 is related to the rate of

disappearance of O_2 by the following expression:

1. $-\frac{\Delta[O_2]}{\Delta t} = +\frac{1}{2} \frac{\Delta[SO_3]}{\Delta t}$ 2. $-\frac{\Delta[O_2]}{\Delta t} = \frac{\Delta[SO_3]}{\Delta t}$ 3. $-\frac{\Delta[O_2]}{\Delta t} = -\frac{1}{2} \frac{\Delta[SO_3]}{\Delta t}$ 4. None of the above

For a general reaction $A \rightarrow B$, the plot of the 3 concentration of A vs. time is given in the figure.

The slope of the curve will be:

- 1. -k
- 2. -k/2
- 3. $-k^2$
- 4. -k/3

4 The correct expression for the rate of reaction given below is:

$$5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(I)$$

$$1. \quad \frac{\Delta[Br^{-}]}{\Delta t} = 5\frac{\Delta[H^{+}]}{\Delta t}$$

$$2. \quad \frac{\Delta[Br^{-}]}{\Delta t} = \frac{6}{5}\frac{\Delta[H^{+}]}{\Delta t}$$

$$3. \quad \frac{\Delta[Br^{-}]}{\Delta t} = \frac{5}{6}\frac{\Delta[H^{+}]}{\Delta t}$$

$$4. \quad \frac{\Delta[Br^{-}]}{\Delta t} = 6\frac{\Delta[H^{+}]}{\Delta t}$$

5 A reaction is first-order with respect to A and secondorder with respect to B. The concentration of B is

increased three times. The new rate of the reaction would: 1. Decrease 9 times.

- 2. Increase 9 times.
- 3. Increase 6 times.
- 4. Decrease 6 times.

6 For the reaction,

 $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$

the value of the rate of disappearance of N_2O_5 is given as $6.25 \times 10^{-3} mol \ L^{-1}s^{-1}$. The rate of formation of NO_2 and O_2 is given respectively as:

1. 6.25 x 10^{-3} mol L⁻¹s⁻¹ and 6.25 x 10^{-3} mol L⁻¹s⁻¹ 2. $1.25 \times 10^{-2} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ and $3.125 \times 10^{-3} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ 3. $6.25 \times 10^{-3} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ and $3.125 \times 10^{-3} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ 4. $1.25 \ge 10^{-2} \mod L^{-1}s^{-1}$ and $6.25 \ge 10^{-3} \mod L^{-1}s^{-1}$

7 During the formation of ammonia by Haber's process $\overline{N_2}$ + 3H₂ \rightarrow 2NH₃, the rate of appearance of NH₃ was measured as 2.5×10^{-4} mol L⁻¹ s⁻¹. The rate of disappearance of H₂ will be:

1. 2.5 x 10⁻⁴ mol L⁻¹ s⁻¹ 2. 1.25 x 10⁻⁴ mol L⁻¹ s⁻¹ 3. $3.75 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$ 4. 15.00 x 10⁻⁴ mol L⁻¹ s⁻¹

8 For the reaction, $N_2 + 3H_2 \rightarrow 2NH_3$, if, $rac{\overline{d[NH_3]}}{dt} \;=\; 2 imes 10^{-4} \; mol \; L^{-1} \; s^{-1}, \; ext{the value of} \;\;\; rac{-d[H_2]}{dt}$ would be: $1.~3 imes 10^{-4}~mol~L^{-1}~s^{-1}$ $2.~4 imes 10^{-4}~mol~L^{-1}~s^{-1}$ $3.~6 imes 10^{-4}~mol~L^{-1}~s^{-1}$ $4.~1 imes 10^{-4}~mol~L^{-1}~s^{-1}$

 9 The rate constant of a particular reaction has the dimension of frequency. The order of the reaction is: 1. Zero. 2. First. 3. Second. 4. Fractional. 10 The incorrect statement regarding the order of reaction is: 1. Order is not influenced by the stoichiometric coefficient of the reactants. 				Rate = k[A] If the conce concentration the reaction 1. The same 2. Doubled. 3. Quadrupl 4. Halved.	[B] ntration of r on of A cons will be: ed. reaction, 24	eactant 'B' is stant, then the $A + B \rightarrow 0$	\rightarrow C is found to be a doubled, keeping the ne value of the rate of C + D, the following
2. concentrati reaction.	on terms of		xpress the rate of			[B]/mol L ⁻¹	Initial rate of formation of D/mol L ⁻¹ min ⁻¹
 The order of Order can be 		•		I	0.1	0.1	6.0×10^{-3}
				II	0.3	0.2	7.2×10^{-2}
	•	5 1	latinum surface is a	III	0.3	0.2	2.88×10^{-1}
		ates of produc	ction of N_2 and H_2	IV	0.4	0.1	2.40×10^{-2}
will be respectively: (given ; $k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1}$) 1. 2.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ and 5.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ 2. 2.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ and 7.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ 3. 1.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ and 4.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ 4. 0.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹ and 3.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹			mol L ⁻¹ s ⁻¹ mol L ⁻¹ s ⁻¹	The rate law applicable to the above mentioned reaction would be: 1. Rate = $k[A]^2[B]^3$ 2. Rate = $k[A][B]^2$ 3. Rate = $k[A]^2[B]$ 4. Rate = $k[A][B]$			
12 Match th	e items in C	olumn I with	Column II:	15 The ra	ate equation	n of a reac	tion is expressed as,
Column I		Column II			- 3		1
A. Diamond t	to graphite	1. Short interv	val of time	Rate = $k(P_{CH_3OCH_3})^{\frac{1}{2}}$			
conversion1. Short interval of timeB. Instantaneous rate2. Ordinarily rate of conversion is imperceptible			(Unit of rate = bar min ⁻¹) The units of the rate constant will be: 1. $bar^{1/2}$ min				
C. Average rate 3 . Long duration of time		2. $bar^2 min^{-1}$					
Codes		D	C	3. bar ⁻¹ min ⁻			
1	A 2	B	C 2	4. bar ^{-1/2} min	n ⁻¹		
1. 2.	2	2	3				
2. 3.	3	2	1				
5. 4.	1	3	2				

Consider the reaction $A \rightarrow B$. The concentration of 16 both the reactants and the products varies exponentially

with time.

The graph that accurately depicts how reactant and product concentrations change with time is:

True statement among the following is: 17

The rate of a reaction decreases with the passage of time as the concentration of reactants decreases.

The rate of a reaction is the same at any time during the reaction.

The rate of a reaction is independent of temperature 3. change.

The rate of a reaction decreases with an increase in the concentration of the reactants.

18 Based on the graph below, the average rate of reaction will be:

1. $\frac{[R_2]-[R_1]}{t_2-t_1}$ 2. $-\left(\frac{[R_2]-[R_1]}{t_2-t_1}\right)$

3.
$$\frac{[R_2]}{t_2}$$

4. $-\left(\frac{[R_1]-[R_2]}{t_2-t_1}\right)$

19 The average rate of reaction between the time interval of 30 to 60 seconds in the below mentioned pseudo 1st order reaction is:

t/s	0	30	60	90		
[Ester]/mol L ⁻¹	0.55	0.31	0.17	0.085		
$1.6.67 imes 10^{-2} ext{ mol } ext{L}^{-1} ext{ s}^{-1}$						
$2.\ 2.\ 67 imes 10^{-4}\ { m mol}\ { m L}^{-1}\ { m s}^{-1}$						
$3.\ 4.\ 67 imes 10^{-3}\ { m mol}\ { m L}^{-1}\ { m s}^{-1}$						
$4.~4.~27 imes10^3~\mathrm{mol}~\mathrm{L}^{-1}~\mathrm{s}$	$^{-1}$					

If given for the at а instant, 20 reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ rate and rate constant are 1.02×10^{-4} and 3.4×10^{-5} sec ⁻¹ respectively, then the concentration of N_2O_5 at that time will be:

- 1. 1.732 mol L^{-1}
- 2. 3.0 mol L^{-1}
- $3.1.02 \times 10^{-4} \text{ mol } \text{L}^{-1}$
- 4. 3. 4×10^5 mol L⁻¹

DEFINITION, RATE CONSTANT, RATE LAW - LEVEL II

21 The correct expression for the 3/4th life of a first-order reaction is:

- $\frac{1}{2} \cdot \frac{\frac{k}{2.303} \log \frac{4}{3}}{2} \cdot \frac{\frac{2.303}{k} \log \frac{3}{4}}{2}$

- $\frac{1}{3} \cdot \frac{\frac{2.303}{k} \log 4}{\frac{2.303}{k} \log 4} \\
 4 \cdot \frac{\frac{2.303}{k} \log 3}{\frac{1}{2}} \log 3$

22 The rate of the reaction

 $\overline{2NO} + Cl_2 \rightarrow 2NOCl$ is given by the rate equation

rate =
$$k[NO]^2[Cl_2]$$

The value of the rate constant can be increased by:

- 1. Increasing the concentration of NO
- 2. Increasing the concentration of Cl_2
- 3. Increasing the temperature
- 4. All of the above

⊖ neetprep

CHAPTER 3 - CHEMICAL KINETICS

23 In a reaction between A and B, the initial rate of reaction (r_0) was measured for different initial concentrations of A and B as given below:

A / mol L ⁻¹	0.20	0.20	0.40
B / mol L ⁻¹	0.30	0.10	0.05
$r_{o} / mol L^{-1} s^{-1}$	5.07 x 10 ⁻⁵	5.07 x 10 ⁻⁵	1.43 x 10 ⁻⁴

The order of the reaction with respect to A and B would be:

1		The order with respect to A is 0.5 and with respect to B is zero.
1	•	is zero.

2. The order with respect to A is 1 and with respect to B is 0.5

3. The order with respect to A is 2 and with respect to B is 1

4. The order with respect to A is 1.5 and with respect to B is zero

24

Consider the following graph:

The instantaneous rate of reaction at t = 600 sec will be: 1. $-4.75 \times 10^{-4} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ 2. $5.75 \times 10^{-5} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ 3. $6.75 \times 10^{-6} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ 4. $-6.75 \times 10^{-6} \text{ mol } \text{L}^{-1}\text{s}^{-1}$ **25** For the reaction $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$, the

concentration of NO_2 increases by 2.4×10^{-2} mol L⁻¹ in 6 seconds. The rate of appearance of NO_2 and the rate of disappearance of N_2O_5 , respectively, are:

1. $2 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$, $4 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$ 2. $2 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$, $1 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$ 3. $2 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$, $2 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$

4. 4 x 10^{-3} mol L⁻¹ sec⁻¹, 2 x 10^{-3} mol L⁻¹ sec⁻¹

26 In the following reaction:
$$xA \rightarrow yB$$

 $\log\left(-\frac{d[A]}{dt}\right) = \log\left(\frac{d[B]}{dt}\right) + 0.3$

where the -ve sign indicates the rate of disappearance of the reactant. Then, x : y equals:

1.	1:2	2.	2:1
3.	3:1	4.	3:10

27 The decomposition of a gaseous compound yields the following information:

	0				
Initial pressure, atm				0.8	0.4
Time f	or 50 % reaction	80	113	160	
The ord	The order of the reaction will be:				
1. 1.0 2.			1.5		
3.	2.0	4.	0.5		

28 From the following data , the orders with respect to A, B, C , respectively, are :

[A] (mol/L)	[B] (mol/L)	[C] (mol/L)	rate (M/sec.)
0.2	0.1	0.02	8.08 x 10 ⁻³
0.1	0.2	0.02	2.01 x 10 ⁻³
0.1	1.8	0.18	6.03 x 10 ⁻³
0.2	0.1	0.08	6.464 x 10 ⁻²

 $\begin{array}{c} 1. \ -1, \ 1, \ 3/2 \\ 2. \ -1, \ 1, \ 1/2 \\ 3. \ 1, \ 3/2, \ -1 \\ 4. \ 1, \ -1, \ 3/2 \end{array}$

29 A gaseous reaction $A_2(g) \rightarrow B(g) + \frac{1}{2}C(g)$ shows increase in pressure from 100 mm to 120 mm in 5 minutes. The rate of disappearance of A_2 will be :

1.	4 mm min ⁻¹	2.	8 mm min ⁻¹
3.	16 mm min ⁻¹	4.	2 mm min ⁻¹

ARRHENIUS EQUATION - LEVEL I

30 If a reaction $A + B \rightarrow C$ is exothermic to the extent of

30 kJ mol⁻¹ and the forward reaction has an activation energy of 249 kJ mol⁻¹, the activation energy for the reverse reaction in kJ mol will be:

31 The correct statement about the rate constant of a reaction is:

- 1 Rate constant is nearly doubled with a rise in
- ¹. temperature by 10 °C

1.

3.

- 2. Rate constant becomes half with a rise in temperature by 10 $^{\circ}$ C
- 3. Rate constant remains unchanged with a rise in temperature by $10 \,^{\circ}\text{C}$
- 4. None of the above

32 The correct statement about X in the below mentioned graph:

33 Select the correct option based on statements below:					
Assertion (A): All collisions of reactant molecules lead product formation.					
Reason (R):	Only those collisions in which molecules have the correct orientation and sufficient kinetic energy lead to the compound formation.				

1.	Both (A) and (R) are true and (R) is the correct explanation of (A).
2.	Both (A) and (R) are true but (R) is not the correct explanation of (A).
3.	(A) is true but (R) is false.
4.	(A) is false but (R) is true.

34 The nature of the reaction represented in the following graph is:

- 1. Endothermic reaction
- 2. Exothermic reaction
- 3. Both endothermic and exothermic reactions are
- represented by the same graph.
- 4. None of the above

35 For a reaction $A \rightarrow B$, the Arrhenius equation is given as $log_e k = 4 - \frac{1000}{T}$ the activation energy in J/mol for the given reaction will be:

- 1.8314
- 2.2000
- 3. 2814
 4. 3412

¹ respectively.

The value of the rate constant as $T \rightarrow \infty$ will be:

 $1.2.0 \times 10^{18} \text{ s}^{-1}$

- 2. $6.0 \times 10^{14} \text{ s}^{-1}$
- 3. *∞*
- 4. $3.6 \times 10^{30} \text{ s}^{-1}$

38 For A + B \rightarrow C + D, Δ H = -20 kJ mol⁻¹, the activation energy of the forward reaction is 85 kJ mol⁻¹. The activation energy for the backward reaction is.... kJ mol⁻¹.

1. 105

- 2.85
- 3.40
- 4.65

39 If ΔH of a reaction is 100 kJ mol⁻¹, then the activation energy for the forward reaction must be

- 1. Greater than 100 kJ mol⁻¹
- 2. Less than 100 kJ mol⁻¹
- 3. Equal to 100 kJ mol⁻¹
- 4. None of the above.

40 The decomposition of hydrocarbons follows the equation: $k = (4.5 \times 10^{11} s^{-1}) e^{-28000 K/T}$

The activation energy (E_a) for the reaction would be:

1.	232.79 kJ mol ⁻¹	2.	245.86 kJ mol ⁻¹
3.	126.12 kJ mol ⁻¹	4.	242.51 kJ mol ⁻¹

41 An increase in the concentration of the reactants of a reaction leads to a change in:

	0		
1.	Heat of reaction	2.	Threshold energy
3.	Collision frequency	4.	Activation energy

42 In a first-order reaction $A \rightarrow$ products, the concentration of the reactant decreases to 6.25 % of its initial value in 80 minutes. The value of the rate constant, if the initial concentration is 0.2 mole/litre, will be:

1. 2. $17 \times 10^{-2} min^{-1}$ 2. 3. $46 \times 10^{-2} min^{-1}$ 3. 3. $46 \times 10^{-3} min^{-1}$

4. 2.
$$16 \times 10^{-3} min^{-1}$$

43 Select the correct option based on statements below:

	At very high temperatures (approaches to infinity), the rate constant becomes equal
	to the collision frequency.
Reason (R):	The collision in which molecules collide with proper orientation is called an ineffective collision.

- Both (A) and (R) are true and (R) is the correct
- |¹ explanation of (A).
 - Both (A) and (R) are true but (R) is not the correct
- ². explanation of (A).
- 3. (A) is true but (R) is false.
- 4. Both (A) and (R) are false.

44 The rate of a reaction doubles when its temperature changes from 300 K to 310 K. The activation energy of such a reaction will be: (R = 8.314 J K⁻¹ mol⁻¹ and log 2 = 0.301) 1. 53.6 kJ mol^{-1} 2. 68.6 kJ mol^{-1} 3. 59.5 kJ mol^{-1}

4. 70.5 kJ mol^{-1}

Or neet prep

CHAPTER 3 - CHEMICAL KINETICS

45 If a reaction $A + B \rightarrow C$ is exothermic to the extent of

 $\overline{30}$ kJ/mol and the forward reaction has an activation energy of 70 kJ/mol, the activation energy for the reverse reaction will be:

- 1. 30 kJ/mol
- 2. 40kJ/mol
- 3. 70 kJ/mol
- 4. 100 kJ/mol

46 The rate constant for a chemical reaction that takes

place at 500 K is expressed as $K = A e^{-1000}$. The activation energy of the reaction will be:

- 1. 100 cal/mol
- 2. 1000 kcal/mol
- 3. 10^4 kcal/mol
- 4. 10⁶ kcal/mol

47 The correct graphical representation of relation between ln k and 1/T is:

48 A catalyst lowers the activation energy of a reaction from 20 kJ mol⁻¹ to 10 kJ mol⁻¹. The temperature at which the uncatalysed reaction will have the same rate as that of the catalysed at 27 °C will be:

- $1. -123 \ ^{\circ}C$ $2. -327 \ ^{\circ}C$
- 2.-327 °C 3. 327 °C
- $4.23^{\circ}C$
- 4.23 C

49 The rate of reaction triples when the temperature

changes from 20 $^{\circ}$ C to 50 $^{\circ}$ C. The energy of activation for the reaction will be:

- 1. 28. 81 kJ mol⁻¹ 2. 38. 51 kJ mol⁻¹ 3. 18. 81 kJ mol⁻¹
- 4. 8. 31 kJ mol⁻¹

50 The graph between lnK and 1/T is given below:

The value of activation energy would be: 1. 207.8 KJ/mol 2. - 207.8 KJ/mol 3. 210.8 KJ/mol 4. - 210.8 KJ/mol

51 The decomposition of A into product has value of k

as 4.5×10^3 s⁻¹ at 10 °C. Energy of activation of the reaction is 60 kJ mol⁻¹. The temperature at which value k would become 1.5×10^4 s⁻¹ is :

- 1. 12 °C
- 2. 24 °*C* 3. 48 °*C*
- 5.48 C 4.36 °C

The correct statement based on the graph below is:

Activated complex E_1 E_2 Reactants

Reaction coordinate ----

1. The activation energy of the forward reaction is $E_1 + E_2$ and the product is less stable than reactant.

The activation energy of the forward reaction is 2. $E_1 + E_2$ and the product is more stable than the reactant.

The activation energy of both forward and backward 3. reaction is $E_1 + E_2$ and reactant is more stable than the

product. The activation energy of the backward reaction is E_1

and the product is more stable than reactant.

53 At 400 K, the energy of activation of a reaction is decreased by 0.8 kcal in the presence of a catalyst. As a result, the rate will be:

- 1. Increased by 2.71 times.
- 2. Increased by 1.18 times.
- 3. Decreased by 2.72 times.
- 4. Increased by 6.26 times.

54 Given the following reaction:

 $\overline{N_2O_5}$ as $N_2O_5 \rightleftharpoons 2NO_2 + (1/2)O_2$

The values of rate constants for the above reaction are 3.45×10^{-5} and 6.9×10^{-3} at 27 °C and 67 °C respectively. The activation energy for the above reaction is :

 $1.\ 102 imes 10^2\ J$

- 2. 488. 5 kJ
- $3.\ 112\ J$
- 4. 112. 5 kJ

55 The activation energy of a chemical reaction can be calculated by:

- 1. Determining the rate constant at standard temperature.
- 2. Determining the rate constant at two temperatures.
- 3. Determining probability of collision.
- 4. Using the catalyst.

56 When the temperature of a reaction increases from

27 $^{\circ}$ C to 37 $^{\circ}$ C, the rate increases by 2.5 times. The activation energy in the temperature range will be:

- 1. 53.6 kJ 2. 12.61 kJ
- 2. 12.01 kJ 3. 7.08 kJ
- 4. 70.8 kJ

Arrhenius Equation - Level II

57 The rate constant for the first-order decomposition of H_2O_2 is given by the equation: log $k = 14.34 - 1.25 \times 10^4 \frac{K}{T}$. The value of E_a for the reaction would be:

- 1. 249.34 kJ mol⁻¹
- 2. 242.64 J mol⁻¹
- 3. -275.68 kJ mol⁻¹
- 4. 239.34 kJ mol⁻¹

58 Select the correct option based on statements below:

Assertion (A):	The rate constant determined from the Arrhenius equation is fairly accurate for simple as well as complex molecules.
Reason (R):	Reactant molecules undergo chemical change irrespective of their orientation during a collision.

- Both (A) and (R) are true and (R) is the correct explanation of (A).
 Both (A) and (R) are true but (R) is not the correct explanation of (A).
 (A) is the correct of the correct o
- 3. (A) is true but (R) is false.
- 4. Both (A) and (R) are false.

59 For the reaction, $C_2H_5I + OH^- \rightarrow C_2H_5OH + I^-$ the constant was found to have a rate value of $\times 10^{-2} \text{ mol}^{-1} \text{ dm}^{3}$ s⁻¹ 5.03 at 289 K and $6.71 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ at 333 K. The rate constant at 305 K will be: $1.\ 1.\ 35\ mol^{-1}\ dm^3\ s^{-1}$ $2.\ 0.\ 35\ mol^{-1}\ dm^3\ s^{-1}$ $3.\ 3.\ 15\ mol^{-1}\ dm^3\ s^{-1}$ $4.\ 7.\ 14\ mol^{-1}\ dm^3\ s^{-1}$

60 A first-order reaction's 10 percent completion time at

298 K is the same as its 25 percent completion time at 308 K. The value of $\rm E_a$ will be:

- 1. 76. 64 $J \,\mathrm{mol}^{-1}$
- 2. 66. 64 kJ mol^{-1}
- 3. 76. 64 kJ mol^{-1}
- 4. 70. 34 kJ mol⁻¹

For a given reaction, the presence of a catalyst

reduces the energy of activation by 2 kcal at 27 $^{\circ}$ C. The rate of reaction will be increased by:

- 1. 20 times
- 2. 14 times
- 3. 28 times
- 4. 2 times

62 The first order rate constant for a certain reaction

increases from $1.667 \times 10^{-6} \text{ s}^{-1}$ at 727 °C to $1.667 \times 10^{-4} \text{ s}^{-1}$

at 1571 °C. The rate constant at 1150 °C is:

(assume activation energy is constant over the given temperature range)

 $1.\ 3.\ 911 imes 10^{-5}\ s^{-1}$

- $2.1.\,139 imes 10^{-5}\ s^{-1}$
- $3.\ 3.\ 318 imes 10^{-5}\ s^{-1}$
- $4.\ 1.\ 193 imes 10^{-5}\ s^{-1}$

63 Consider the Arrhenius equation given below and choose the correct option:

k = $Ae^{-\frac{E_a}{RT}}$ 1. Rate constant increases exponentially with increasing activation energy and decreasing temperature. 2. Rate constant decreases exponentially with increasing activation energy and decreasing temperature. 3. Rate constant increases exponentially with decreasing

activation energy and decreasing temperature.

4. Rate constant increases exponentially with decreasing activation energy and increasing temperature.

For a first-order reaction $A \rightarrow P$, rate constant (k) [dependent on temperature (T)] was found to follow the equation $log k = (-2000)\frac{1}{T} + 6.0$. The pre-exponential factor A and the activation energy E_a , respectively, are: $1. 1.0 \times 10^6 s^{-1}$ and $9.2 kJ mol^{-1}$ $2. 6.0 s^{-1}$ and $16.6 kJ mol^{-1}$ $3. 1.0 \times 10^6 s^{-1}$ and $16.6 kJ mol^{-1}$ $4. 1.0 \times 10^6 s^{-1}$ and $38.3 kJ mol^{-1}$

65 The relationship between temperature and the variance in reaction rate is:

66 In the Arrhenius equation $K = Ae^{-E_a/RT}$, the quantity

- $e^{-E_a/kT}$ is referred as:
- 1. Boltzmann factor.
- 2. Frequency factor.
- 3. Activation factor.
- 4. None of the above.

67 For a chemical reaction $A \rightarrow$ product, the postulated FIRST ORDER REACTION KINETICS mechanism of the reaction is as follows. - Level I $A \stackrel{k_1}{\rightleftharpoons} 3B \stackrel{k_3}{\longrightarrow} C$ The rate constant of a radioactive substance is 4 70 If the rate constants for individual reactions are k_1, k_2 and years $^{-1}$. The value of half-life will be : k₃, and activation energies are 1. 0.05 years $E_{a_1} = 180 \ kJ \ mol^{-1}$ 2. 0.17 years $E_{a_2} = 90 \ kJ \ mol^{-1},$ $3.0.26 \text{ years}^{-1}$ $E_{a_3} = 40 \; kJ \; mol^{-1}$ 4. 1.6 years then overall activation energy for the reaction given above The rate constant for a first-order reaction is is 71 1. 70 kJ mol⁻¹ $\overline{4.606 \times 10^{-3}} \ s^{-1}$. The time required to reduce 2.0 g of 2. -10 kJ mol⁻¹ the reactant to 0.2 g will be: 3. 310 kJ mol⁻¹ 1.200 s 2.500 s 4. 130 kJ mol⁻¹ 3.1000 s 4.100 s The rate constant for the decomposition of 68 hydrocarbons is 2.418×10^{-5} s⁻¹ at 546 K. If the energy of The graph that represents a first-order reaction is: 72 activation is 179.9 kJ/mol, the value of the pre-exponential factor will be: $1.~4.~0 imes 10^{12}~{
m s}^{-1}$ $2.~7.~8 imes 10^{-13}~{
m s}^{-1}$ 2. 1. t_{1/2} t_{1/2} $3.\ 3.\ 8 imes 10^{-12}\ {
m s}^{-1}$ $4.\ 4.\ 7 imes 10^{12}\ {
m s}^{-1}$ а а 69 An incorrect statement about the collision theory of chemical reaction is: It considers reacting molecules or atoms to be hard spheres and ignores their structural features. 4. **t_{1/2}** 3. $t_{1/2}$ The number of effective collisions determines the rate 2. of reaction. The collision of atoms or molecules possessing а а sufficient threshold energy results in product formation. Molecules should collide in the proper orientation for The half-life period for a first-order reaction is 73 4. the collision to be effective with sufficient threshold 20 minutes. The time required to change the concentration energy and proper orientation. of the reactants from 0.08 M to 0.01 M will be: 1.20 minutes 2.60 minutes 3.40 minutes 4. 50 minutes

The half-life of ${}^{92}U_{238}$ against α -decay is 74 4.5×10^9 year. The time taken in a year for the decay of the 15/16 part of this isotope will be: $1.9.0 \times 10^{9}$ 2. 1. 8×10^{10} 3. 4. 5 \times 10⁹ 4. 2. 7×10^{10} The rate constant of a first-order reaction is 75 $\overline{4 \times 10^{-3}}$ sec⁻¹. At a reactant concentration of 0.02 M, the rate of reaction would be: 1.8 x 10^{-5} M sec⁻¹ 2. 4 x 10^{-3} M sec⁻¹ $3.2 \times 10^{-1} \text{ M sec}^{-1}$ 4.4 x 10^{-1} M sec⁻¹ The half-life time for the decomposition of a 76 substance dissolved in CCl₄ is 2.5 hours at 30 °C. The amount of substance that will be left after 10 hours if the initial weight of the substance is 160 gm is:

1. 20 gm

2. 30 gm

3. 40 gm

4. 10 gm

77 For a reaction of the type $2A + B \rightarrow 2C$, the rate of

the reaction is given by $k[A]^2[B]$. When the volume of the reaction vessel is reduced to $\frac{1}{4}$ th of the original volume, the rate of reaction changes by a factor of -

1.0.25

2.16

3.64

4.4

78 For the elementary reaction $M \rightarrow N$, the rate of disappearance of M increases by a factor of 8 upon doubling the concentration of M. The order of the reaction with respect to M will be:

1.4

2.3

- 3.2
- 4.1

79 If 'a' is the initial concentration of a substance which

reacts according to zero-order kinetics and k is the rate constant, the time for the reaction to go to completion will be:

- 1. a/k
- 2. 2/ka
- 3. k/a
- 4. Infinite

80 If 60 % of a first-order reaction is completed in 60

minutes, 50 % of the same reaction takes approximately: $(\log 4 = 0.60, \log 5 = 0.69)$

1. 55 min

- 2.45 min
- 3.60 min
- 4. 30 min

81 The correct graphical representation of first-order reaction is:

82 The half-life for radioactive decay of ${}^{14}C$ is 5730 y. An archaeological artifact containing wood had only 80 % of the ${}^{14}C$ found in a living tree. The age of the sample

- will be: 1. 1657.3 y
- 2. 1845.4 y
- 3. 1512.4 y
- 4. 1413.1 y

83 A first-order reaction was started with a decimolar

solution of the reactant. After 8 minutes and 20 seconds, its concentration was found to be M/100. The rate constant of the reaction will be:

 $\begin{array}{l} 1.\ 4.\ 6\times 10^{-3} sec^{-1}\\ 2.\ 16.\ 6\times 10^{-3}\ sec^{-1}\\ 3.\ 24.\ 6\times 10^{-3}\ sec^{-1}\\ 4.\ 40.\ 6\times 10^{-3}\ sec^{-1}\end{array}$

84 Given the following observations:

Experiment	[A] / mol L ⁻¹	[B] / mol L ⁻¹	Initial rate / mol L ⁻ ¹ min ⁻¹
Ι	0.1	0.1	2.0 x 10 ⁻²
II	Х	0.2	4.0 x 10 ⁻²
III	0.4	0.4	Y

The reaction between A and B is first-order with respect to A and zero-order with respect to B. The values of X and Y are, respectively:

- 1. $X = 0.2 \mod L^{-1}$; $Y = 0.08 \mod L^{-1}(\min)^{-1}$
- 2. $X = 0.02 \mod L^{-1}$; $Y = 0.08 \mod L^{-1} (\min)^{-1}$
- 3. $X = 0.01 \ mol \ L^{-1}$; $Y = 0.8 \ mol \ L^{-1}(min)^{-1}$
- 4. $X = 0.2 \mod L^{-1}$; $Y = 0.8 \mod L^{-1}(\min)^{-1}$

85 A first-order reaction is 50 % completed in

 $1.26 \ge 10^{14}$ s. The time required for 100 % completion of the reaction will be:

1. 1.26×10^{15} s

- 2. 2.52×10^{14} s
- $3.2.52 \times 10^{28} \text{ s}$
- 4. Infinite

86 During a nuclear explosion, one of the products is

⁹⁰Sr with a half-life of 28.1 years. If 1µg of ⁹⁰Sr was absorbed in the bones of a newly born baby instead of calcium, the amount of ⁹⁰Sr that will remain after 10 years in the now grown up child would be -

(Given ,antilog(0.108)=1.28)

- $1.\ 0.227\ \mu g$
- 2. 0.781 μg
- 3. 7.81 μg

4. 2.27 μg

87 A first-order reaction takes 40 min for 30 % decomposition. The half life of the reaction will be:

- 1. 88.8 min
- 2. 94.3 min
- 3. 67.2 min 4. 77.7 min

88 If the rate of reaction doubles when the temperature is raised from 20 °C to 35 °C, then the activation energy for the reaction will be :

(R = 8.314 J mol⁻¹ K⁻¹) 1. 342 kJ mol⁻¹ 2. 269 kJ mol⁻¹ 3. 34.7 kJ mol⁻¹ 4. 15.1 kJ mol⁻¹

89 If in the fermentation of sugar in an enzymatic solution that is 0.12 M, the concentration of the sugar is reduced to 0.06 M in 10 h and to 0.03 M in 20 h, the order of the reaction will be:

- 1.1 2.2
- 3.3
- 4.0

90 For a general reaction $A \rightarrow B$, the plot of concentration of A vs time is given below:

The unit of the rate constant would be: 1. $mol^{-1}L^{-1}s^{-1}$ 2. s^{-1}

2. s⁻¹
 3. mol L⁻¹s⁻¹
 4. None of the above

91 The thermal decomposition of a compound is of first

order. If 50 % of a sample of the compound decomposes in 120 minutes, how long will it take for 90 % of the compound to decompose?

- 1. 399 min
- 2. 410 min
- 3. 250 min
- 4. 120 min

92 Consider the first-order gas-phase decomposition reaction given below.

 $A(g) \rightarrow \tilde{B}(g) + C(g)$

The initial pressure of the system before the decomposition of A was P_i . After the lapse of time t, the total pressure of the system increased by X units and became P_t . The rate constant k for the reaction is:

 $\begin{array}{l} 1. \ \mathbf{k} = \frac{2.303}{t} \log \frac{P_{\mathrm{i}}}{P_{\mathrm{i}} - \mathbf{x}} \\ 2. \ \mathbf{k} = \frac{2.303}{t} \log \frac{P_{\mathrm{i}}}{2P_{\mathrm{i}} - P_{\mathrm{t}}} \\ 3. \ \mathbf{k} = \frac{2.303}{t} \log \frac{P_{\mathrm{i}}}{2P_{\mathrm{i}} + P_{\mathrm{t}}} \\ 4. \ \mathbf{k} = \frac{2.303}{t} \log \frac{P_{\mathrm{i}}}{P_{\mathrm{i}} + \mathbf{x}} \end{array}$

93 The rate of a reaction increases 4-fold when concentration of reactant is increased 16 times.

If the rate of reaction is 4×10^{-6} mol L⁻¹s⁻¹ when concentration of the reactant is 4×10^{-4} mol L⁻¹, the rate constant of the reaction will be :

1. $2 \times 10^{-4} \text{ m}^{1/2} \text{ L}^{-1/2} \text{ s}^{-1}$ 2. $1 \times 10^{-2} \text{ s}^{-1}$ 3. $4 \times 10^{-4} \text{ mol}^{-1/2} \text{ L}^{-1/2} \text{ s}^{-1}$ 4. 25 mol⁻¹L min⁻¹

94 The elementary reaction $A + B \rightarrow$ products has $k = 2 \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1}$ at a temperature of 27 °C. Several experimental runs are carried out using stoichiometric proportion. The reaction has a temperature coefficient value of 2.0. At what temperature should the reaction be carried out if, in spite of halving the concentrations, the rate of reaction is desired to be 50 % higher than in the

previous run? (Given $\frac{ln6}{ln2} = 2.585$) 1. 47 °C 2. 53 °C 3. 57 °C 4. 37 °C **95** A first-order reaction takes 40 min for 30 % decomposition. The $t_{1/2}$ for this reaction will be:

	•	1/2	
1.	77.7 min	2.	27.2 min
3.	55.3 min	4.	67.3 min

First Order Reaction Kinetics <u>- Level II</u>

96 The decomposition of sucrose follows the first-order rate law. For this decomposition, $t_{1/2}$ is 3.00 hours. The fraction of a sample of sucrose that remains after 8 hours would be:

1.	0.13	2.	0.42
3.	0.16	4.	0.25

4. $\frac{2.303}{k}$

98 The half-life of the two samples is 0.1 and 0.4 seconds, respectively. Their concentrations are 200 and 50, respectively. The order of the reactions will be:

- 1.0
- 2.2 3.1
- 4.4

99	The	gas	phase	
decomposition	$2N_2O_5$	\rightarrow 4NO ₂ + O ₂ follows	the first	

order rate law, $K = 7.5 \times 10^{-3} \text{ sec}^{-1}$. The initial pressure of N₂O₅ is 0.1 atm. The time of decomposition of N₂O₅ so that the total pressure becomes 0.15 atm will be -

1.	54 sec	2.	5.4 sec
3.	3.45 sec	4.	34.55 sec

100 1 mole of a gas changes linearly from its initial state

(2 atm, 10 lt) to its final state (8 atm, 4 lt). The maximum rate constant is equal to 20 sec^{-1} and the value of activation energy is 40 kJ, assuming that the activation energy does not change in this temperature range. The value of the rate constant, at the maximum temperature that the gas can attain, is:

1. 0. 56 \times 10⁻³ sec⁻¹ 2. 3. 16 \times 10⁻³ sec⁻¹ 3. 1. 56 \times 10⁻³ sec⁻¹ 4. 5. 12 \times 10⁻³ sec⁻¹

101 From the plot of log k vs 1/T, following parameter can be calculated:

1. Activation energy.

2. Rate constant of reaction .

3. Order of reaction.

4. Activation energy as well as the frequency factor.

102 For a first-order reaction $A \rightarrow$ Products, the rate of

reaction at [A] = 0.2 M is 1.0×10^{-2} mol litre⁻¹ min⁻¹. The half-life period for the reaction will be:

1.	832 sec	2.	440 sec
3.	416 sec	4.	14 sec

103

Half-life is independent of the concentration of a reactant. After 10 minutes, the volume of N_2 gas is 10 L and after complete reaction, it is 50 L. Hence, the rate constant is:

- 1. $\frac{2.303}{10}\log 5 \min^{-1}$
- 2. $\frac{2.303}{10} \log 1.25 \, \text{min}^{-1}$
- 3. $\frac{2.303}{10}$ log 2 min⁻¹

4.
$$\frac{2.303}{10} \log 4 \min^{-1}$$

104 What is the percentage of the reactant molecules crossing over the energy barrier at 325 K?

Given that $\Delta H_{325} = 0.12$ kcal, $E_{a(b)} = +0.02$ kcal

1.	80.62 %	2.	85.23 %
3.	89.27 %	4.	None of the above

105 A first-order reaction is 15 % completed in 20 minutes. The amount of time required to complete 60 % of the reaction is:

1.	112.8 min	2.	120.7 min
3.	100.4 min	4.	140.7 min

106 For a reaction A \rightarrow Product, with k = 2.0 × 10⁻² s⁻¹, if the initial concentration of A is 1.0 mol L⁻¹, the concentration of A after 100 seconds would be :

1.	0.23 mol L ⁻¹	2.	0.18 mol L ⁻¹
3.	0.11 mol L ⁻¹	4.	0.13 mol L ⁻¹

107 The following data were obtained during the first-order thermal decomposition of SO_2Cl_2 at a constant volume.

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

Experiment	Time/s	Total pressure/atm
1	0	0.5
2	100	0.6

The rate of the reaction when total pressure is 0.65 atm will be:

 $\begin{array}{l} 1.\ 7.\ 8\times 10^{-4}\ s^{-1}\ atm.\\ 2.\ 0.\ 8\times 10^{-4}\ s^{-1}\ atm.\\ 3.\ 2.\ 4\times 10^{-2}\ s^{-1}\ atm.\\ 4.\ 6.\ 1\times 10^{-8}\ s^{-1}\ atm. \end{array}$

Order, Molecularity and <u>Mechanism - Level I</u>

108 The reaction below is an example of: $CH_3 COOC_2 H_5$

 $\overline{+\,\mathrm{H}_2\mathrm{O}} \stackrel{\mathrm{H}^+}{
ightarrow} \mathrm{CH}_3\,\mathrm{COOH} + \mathrm{C}_2\mathrm{H}_2\,\mathrm{OH}$

Ethyl acetate Acetic acid Ethyl

- 1. Pseudo-first-order reaction
- 2. First-order reaction

alcohol

- 3. Second order reaction
- 4. Third-order reaction

Column I	[Column I		. ,	rue but (R) is			
A. Mathematical expression for the rate of reaction			1. Rate constant 4. (A) is false but (R) is true.							
B. Rate of reaction for zero-order reaction is equal to			2. Rate law Table 2. Rate law Table 2. Rate law Table 2. Rate law Table 2. Order of Table 2. Order of Table 2. Order of Table 2. Order of Table 2. Rate law							
		constant for z as that of	zero-order	3. Order o slowest st		olumn I ma	•	o the same column I	item in Co	olumr
determine		mplex reaction	on is	4. Rate of reaction						
Codes					(i)		/	(ii)	a	
	A	В	С	D	(i)	Rate	/		Rate	
1.	3	4	1	2			/			
2.	1	2	3	4		Cor	ncentration>	►	Concent	ration
3.	2	1	4	3		•				
4.	4	1	3	2		∧ T ∧			. 🛦	
	0		2.	1			Time 🗡		Time	
	1.5		4.	2	→ 7AB 🗠) 1st orde	С	olumn II (b)	Time Zero order	
111 The	1.5 kinetic	data for the	4.	2	→ 7AB 🗠	odes	r	(b) /	Zero order	
111 The are as giv	1.5 kinetic en belo	data for the	4. e reaction:	2	$\rightarrow 2AB$ Co	,	С		Zero order	iv) b)
111 The are as giv [A]/mol I	1.5 kinetic en belo	ata for the	4. e reaction: ¹ Rate	2 2A + B ₂ -	$\rightarrow 2AB$ 1 2 1	(i) (a) (a)	C r (ii) (b) (b)	(b) 2 (iii)	Zero order (i	iv)
111 The are as giv [A]/mol I 0.5	1.5 kinetic en belo	data for the w [B ₂]/mol L ⁻	4. e reaction: ¹ Rate 2.5	2 2A + B ₂ - e/mol L ⁻¹ s ⁻¹ × 10 ⁻³	$\rightarrow 2AB$ 1 1 2 3	(i) (a) (a) (a) (a)	r (ii) (b) (b) (a)	(b) 2 (iii) (a)	Zero order (i (l (a	iv) b)
111 The are as giv [A]/mol I 0.5 1.0	1.5 kinetic en belo	data for the w [B ₂]/mol L ⁻ 1.0 1.0	4. e reaction: ¹ Rate 2.5 5.0	$2 = 2A + B_2 - 2A + $	$\rightarrow 2AB$ 1 2 1	(i) (a) (a)	C r (ii) (b) (b)	(b) 2 (iii) (a) (b)	Zero order (i (l (a	iv) b) a) b)
111 The are as giv [A]/mol I 0.5 1.0 0.5 1.0	1.5 kinetic en belo L ⁻¹	e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0	4. e reaction: 1 Rate 2.5 5.0 1 ×	$2 = 2A + B_2 - 2A + $	$\rightarrow 2AB$ Cc $1.$ $2.$ $3.$ $4.$	(i) (a) (a) (a) (b)	r (ii) (b) (b) (a) (b)	(b) 2 (iii) (a) (b) (b) (a)	Zero order (i (1 (1 (1 (1 (1) (1) (1)	iv) b) a) b) a)
111 The are as giv [A]/mol I 0.5	1.5 kinetic en belov L ⁻¹	data for the w [B ₂]/mol L ⁻ 1.0 1.0	4. e reaction: 1 Rate 2.5 5.0 1 ×	$2 = 2A + B_2 - 2A + $	$\rightarrow 2AB$ Cc $1.$ $2.$ $3.$ $4.$	(i) (a) (a) (a) (b)	C r (ii) (b) (b) (a) (b) the correct op	(b) 2 (iii) (a) (b) (b) (a) tion based	Zero order (i (1 (1 (1 (1 (1 (1) (1) (1) (1) (1) (1)	iv) b) a) b) a) ents b
111Theare as giv[A]/mol I0.51.00.5The orderrespective	1.5 kinetic en belov L ⁻¹	a data for the w $[B_2]/mol L^-$ 1.0 1.0 2.0 eaction with	4. e reaction: 1 Rate 2.5 5.0 1 ×	2 $2A + B_2 - 2A + 2A + B_2 - 2A + 2$	$\rightarrow 2AB$ Co 1 1 2 . 3 . 4 . B ₂ is, 11	(i) (a) (a) (a) (b) Select to	r (ii) (b) (b) (a) (b) (b) (b) (c) For eleme	(b) 2 (iii) (a) (b) (b) (a) tion based	Zero order (i (t (t (t (t on statemotions, the la	iv) b) a) b) a) ents b aw of
111Theare as giv[A]/mol I0.51.00.5The orderrespective1.1 a	1.5 kinetic en belo L ⁻¹ er of re	a data for the w $[B_2]/mol L^-$ 1.0 1.0 2.0 eaction with	$4.$ e reaction: $1 \qquad Rate 2.5 = 5.0 = 1 \times n respect$	$2 = 2A + B_2 - A + B$	$\rightarrow 2AB$ Co 1 1 2 . 3 . 4 . B ₂ is, 11	(i) (a) (a) (a) (b) Select to	r (ii) (b) (b) (a) (b) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (b) (a) tion based ntary react the rate o	Zero order (i (t (t (t (t on statemotions, the la	iv) b) a) b) a) ents b aw of
are as giv [A]/mol I 0.5 1.0 0.5 The order respective 1. 1 a 3. 1 a	1.5 kinetic en belo L ⁻¹ er of re ely: and 2 and 1	a data for the w $[B_2]/mol L^-$ 1.0 1.0 2.0 eaction with	$4.$ e reaction: $1 \qquad Rate 2.5 = 5.0 = 1 \times n respect 2. 2 ar 4. 2 ar$	$2 = 2A + B_2 - 2A + $	$\rightarrow 2AB$ Cc 1 1 2 3 4 $B_2 \text{ is,}$ 1 As	(i) (a) (a) (a) (b) Select to	r (ii) (b) (b) (b) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (a) tion based the rate o the same. cularity of	Zero order (i (t (t (t (t (t on statemotions, the la f law expro- an element	iv) b) a) ents b aw of essior
111 The are as giv are as giv [A]/mol I 0.5 1.0 0.5 The order respective 1. 1 a 3. 1 a 112 Sele	1.5 kinetic en belo L ⁻¹ er of re ely: and 2 and 1 ect the c	e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0 eaction with orrect option	4. e reaction: Rate $2.5 \pm$ $5.0 \pm$ $1 \times$ n respect 2. 2 ar 4. 2 ar h based on s	$2 = 2A + B_2 - 2A + $	$\rightarrow 2AB$ Co 1 1 2 3 4 B ₂ is, 11 As pelow: Reference of the second seco	(i) (a) (a) (b) Select to ssertion (A)	r (ii) (b) (b) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (a) tion based the rate o the same. cularity of	Zero order (i (t (t (t (t (t on statemotions, the la f law expro- an element	iv) b) a) ents b aw of essior
111 The are as giv are as giv [A]/mol I 0.5 1.0 0.5 The order respective 1. 1 a 3. 1 a 112 Sele	1.5 kinetic en belor L ⁻¹ er of re ely: and 2 and 1 ect the c n (A): C	e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0 eaction with orrect option order and mo	4. e reaction: Rate 2.5 5.0 $1 \times$ n respect 2. 2 and 4. 2 and based on solutions	2 $2A + B_2 - 2$ $A +$	$\rightarrow 2AB$ Co 1. 1. 2. 3. 4. B ₂ is, 11 below: Re c.	(i) (a) (a) (a) (b) 4 Select to ssertion (A eason (R):	r (ii) (b) (b) (b) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (b) (a) tion based the rate o the rate o the same. cularity of always on	Zero order (i (l (t (t (t on statement tions, the la f law exprese an element ne.	iv) b) a) ents b aw of essior tary
111 The are as giv [A]/mol I 0.5 1.0 0.5 The order respective 1.12 3.12 Sele Assertion	1.5 kinetic en belov L ⁻¹ er of re ely: and 2 and 1 ect the c n (A): C	e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0 eaction with orrect option	4. e reaction: Rate 2.5 5.0 $1 \times$ n respect 2. 2 and 4. 2 and based on some lecularity and mined expect	2 $2A + B_2 - 2$ $A $	$\rightarrow 2AB$ Co I I I I I I I I I I I I I I I I I I	bodes (i) (a) (a) (b) 4 Select to ssertion (A) eason (R): Both (A) a explanation	r (ii) (b) (b) (a) (b) (b) (a) (b) (b) (c) $($	(b) 2 (iii) (a) (b) (b) (b) (a) tion based the rate o the same. cularity of always on ue and (R)	Zero order (i (l (a (a con statement tions, the la f law exprese an element ne.	iv) b) a) c) a) ents b aw of ession tary
111 The are as giv are as giv [A]/mol I 0.5 1.0 0.5 The order respective 1. 1 a 3. 1 a 112 Sele	1.5kineticen below L^{-1} er of rely:and 2and 1ect the cn (A): CR):n state	e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0 eaction with orrect option Order and mo Order is deternolecularity in toichiometric	4. e reaction: Rate 2.5 5.0 $1 \times$ n respect 2. 2 an 4. 2 an based on s lecularity a mined exponent is the sum of c coefficient	2 $2A + B_2 - 2$ $e/mol L^{-1}s^{-1}$ $\times 10^{-3}$ $\times 10^{-3}$ 10^{-2} to A and ad 1 and 2 and a d 1 and 2 and 3	$\rightarrow 2AB$ Co 1. 2. 3. 4. B ₂ is, 11 As pelow: e. and 1. 2. 1. 2. 3. 1. 2. 3. 1. 2. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	bodes (i) (a) (a) (b) 4 Select the ssertion (A) eason (R): Both (A) a explanation Both (A) a	r (ii) (b) (b) (a) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (b) (a) tion based the rate o the same. cularity of always on ue and (R)	Zero order (i (l (a (a con statement tions, the la f law exprese an element ne.	iv) b) a) c) a) ents b aw of ession tary
111 The are as giv are as giv [A]/mol I 0.5 1.0 0.5 0.5 The order 1.12 Sele Assertion Reason (1.5kineticen below L^{-1} er of rely:and 2and 1ect the cn (A): CR):n d	e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0 eaction with orrect option order and mo order is deternolecularity is toichiometric etermining th	4. $e reaction:$ 1Rate2.55.01 ×1 ×1 ×2.2 and4.2 anda based on solecularity a mined exposis the sum of coefficient the elementation	2 $2A + B_2 - 2$ $A + B_2 - 2$ A	$\rightarrow 2AB$ Co 1 1 2 3 4 1 B ₂ is, 1 B ₂ is, 1 Co	bodes (i) (a) (a) (b) 4 Select to ssertion (A) eason (R): Both (A) a explanation Both (A) a explanation	r (ii) (b) (b) (b) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (a) tion based ntary react the rate o the same. cularity of always on ue and (R) ue but (R)	Zero order (i (l (a (a con statement tions, the la f law exprese an element ne.	iv) b) a) c) a) ents b aw of ession tary
111 The are as giv [A]/mol I 0.5 1.0 0.5 0.5 The order 1. 1 a 3. 1 a 112 Sele Assertion Reason (1 Both (a)	1.5kineticen below L^{-1} er of rely:and 2and 1ect the cn (A): CR):n (A) and (e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0 eaction with orrect option order and mo order is deternolecularity in toichiometrice etermining the R) are true a	4. $e reaction:$ 1Rate2.55.01 ×1 ×1 ×2.2 and4.2 anda based on solecularity a mined exposis the sum of coefficient the elementation	2 $2A + B_2 - 2$ $A + B_2 - 2$ A	→ 2AB C_{0} 1. 1. 2. 3. 4. B ₂ is, 11 As pelow: Ro c. and 1. 2. 3. 4. 1. 2. 3. 4. 1. 2. 3. 4. 1. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	bodes (i) (a) (a) (b) 4 Select the ssertion (A) eason (R): Both (A) a explanation Both (A) a explanation (A) is true	r (ii) (b) (b) (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (b) (a) tion based ntary react the rate o the same. cularity of always on ue and (R) ue but (R) se.	Zero order (i (l (a (a con statement tions, the la f law exprese an element ne.	iv) b) a) c) a) ents b aw of ession tary
111 The are as giv [A]/mol I 0.5 1.0 0.5 The order respective 1. 1 a 3. 1 a 112 Sele Assertion Reason (1. Both (A explanation	1.5 kinetic en below L^{-1} er of rely: and 2 and 1 ect the c n (A): C R): nside A) and (ation of	e data for the w [B ₂]/mol L ⁻ 1.0 1.0 2.0 eaction with orrect option order and mo order is deternolecularity in toichiometrice etermining the R) are true a	4.e reaction:1Rate2.5 5.0 1 ×1 ×1 respect2.2.2 anda based on selecularity awhined exposes the sum ofc coefficienthe elementaand (R) is the	2 $2A + B_2 - 2$ $e/mol L^{-1}s^{-1}$ $\times 10^{-3}$ $\times 10^{-3}$ 10^{-2} to A and ad 1 and 2 and a a	$\rightarrow 2AB$ Co I I I I I I I I I I I I I I I I I I	bodes (i) (a) (a) (b) 4 Select the ssertion (A) eason (R): Both (A) a explanation Both (A) a explanation (A) is true	r (ii) (b) (b) (b) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	(b) 2 (iii) (a) (b) (b) (b) (a) tion based ntary react the rate o the same. cularity of always on ue and (R) ue but (R) se.	Zero order (i (l (a (a con statement tions, the la f law exprese an element ne.	iv) b) a) c) a) ent aw ess tar

115 For a given reaction the concentration of the reactant plotted against time gave a straight line with negative slope.

The order of the reaction will be:

- 1.3
- 2.2
- 3.1
- 4.0

116 A reaction $A_2 + B_2 \rightarrow 2AB$ occurs by the following mechanism:

 $A_2 \rightarrow A + A$(slow) $A + B_2 \rightarrow AB + B$(fast) $A + B \rightarrow AB$(fast) Its order would be: 1.3/2 2.1 3.0

4.2

117 The mechanism of a hypothetical reaction $X_2 + Y_2 \rightarrow 2XY$ is given below: (i) $X_2 \rightarrow X + X$ (Fast) (ii) $X + Y_2 \rightleftharpoons XY + Y$ (slow) (iii) $X + Y \rightarrow XY$ (Fast) The overall order of the reaction will be: 1.2 2.0 3.1.5 4.1

118 The following mechanism has been proposed for the reaction of NO with Br₂ to form NOBr:

 $NO(g) + Br_2(g) \rightleftharpoons NOBr_2(g)$

 $NOBr_2(g) + NO(g) \rightarrow 2NOBr(g)$

If the second step is the rate determining step, the order of the reaction with respect to NO(g) will be:

- 1.1
- 2.0
- 3.3
- 4.2

ORDER, MOLECULARITY AND **MECHANISM - LEVEL II**

 We cannot determine order from the balanced chemical equation. (R) are true and (R) is the correct (A). (R) are true but (R) is not the correct (A). (R) is false. (R) are false.
 (A). (R) are true but (R) is not the correct (A). (R) is false. (R) are false.
 (R) are true but (R) is not the correct (A). (R) is false. (R) are false.
(R) is false. (R) are false.
correct option based on statements below
Base catalyzed hydrolysis of ethyl acetates a first-order reversible reaction.
The order of reaction always depends on he stoichiometry of the reaction.
 (R) are true and (R) is the correct (A). (R) are true but (R) is not the correct (A).
(R) is false.
(R) are false.
correct option based on statements below The overall order of reaction is the sum o
he power of all the reactants in the rate xpression.

122 In a reaction, the rate =	$k[A]^{1}[B]^{-2/3}$ the order of the

reaction is-

- 1. 1/3
- 2.2
- 3. -1/3
- 4. Zero

CATALYST - LEVEL I

123 The role of a catalyst is to change:

- 1. Gibbs energy of the reaction
- 2. Enthalpy of reaction
- 3. The activation energy of the reaction
- 4. Equilibrium constant

124 Match the statements in Column I and Column II :

Co	olumn I			Co	olumn II		
A.	Catalyst alters the rate of reaction			1.	Proper orientation is not there always		
В.	$e^{-E_a/RT}$			2.	By lowering the activation energy		
C.	Energeti favorable sometime	e reactio		3.	Total proba	bility is one	
D.	Area under the Maxwell-Boltzmann curve is constant			4.	Refers to the fraction of molecules with energy equal to or greater than the activation energy		
Co	des						
		А	В		С	D	
1.		2	4		1	3	
2.		3	1		4	2	
3.		1 4			3	2	
4.		3	4		1	2	

125 The factor(s) that affect the rate of a chemical reaction is/are:

- 1. Concentration/Pressure of reactants.
- 2. Temperature.
- 3. Presence of a catalyst.
- 4. All of the above.

1. It catalyzes same extent	the forward and backward reactions to the t.
2. It alters gib	bs free energy of the reaction.
3. It is a subst constant of	ance that does not change the equilibrium a reaction.
4. It provides activation e	an alternate mechanism by reducing energy between reactants and products.
	ne correct option based on statements below The enthalpy of reaction remains constant
Assertion (A)	in the presence of a catalyst.
	A catalyst participating in the reaction forms a different activated complex and

- 2. Both (A) and (R) are true but (R) is not the correct explanation of (A).
- $\begin{array}{c} \text{explanation of (A).} \\ \text{2} \quad (A) \quad (A)$
- 3. (A) is true but (R) is false.
- 4. Both (A) and (R) are false.

CATALYST - LEVEL II

128 In the presence of a catalyst, the heat evolved or absorbed during the reaction:

- 1. Increases.
- 2. Decreases.
- 3. Remains unchanged.
- 4. May increase or decrease.